HGNC Family | Non-coding RNAs |
Name | microRNA 155 |
Description | microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nMiR‐155 is a multifunctional microRNA that plays a central role in regulating immune responses and inflammatory processes. It is induced in a variety of immune cell types, including dendritic cells, regulatory T cells, CD8⁺ T cells, and natural killer cells, where it tunes cytokine production and signaling pathways by directly targeting molecules such as TAB2, MyD88, and components of the T‐cell receptor and cytokine receptor complexes. Through these actions, miR‐155 supports proper immune cell differentiation and function—ensuring efficient pathogen clearance while simultaneously acting as a negative feedback regulator to prevent excessive inflammation."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "8"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIn addition to its immunoregulatory roles, miR‐155 functions as an oncomiR in several human cancers. It is frequently overexpressed in tumors such as breast cancer, pancreatic adenocarcinoma, colorectal cancer, diffuse large B‐cell lymphoma, and chronic lymphocytic leukemia. By targeting tumor suppressors and key signaling mediators—including SOCS1, VHL, SMAD5, and regulators of the cell cycle and DNA repair—miR‐155 promotes malignant transformation, tumor progression, angiogenesis, and even chemoresistance. Moreover, exosomal transfer of miR‐155 between tumor‐associated cells further enhances migration, invasion, and the establishment of a pro‐tumorigenic microenvironment."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "9", "end_ref": "26"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its classical roles in immunity and cancer, miR‐155 also influences other critical biological processes. It couples inflammatory cytokine signals to metabolic reprogramming—such as the upregulation of glycolytic enzymes—in cancer cells and modulates TGF‑β signaling through repression of SMAD2, thereby affecting fibrogenesis and angiogenesis. In musculoskeletal tissues, altered miR‐155 levels have been linked to enhanced apoptosis via deregulation of FADD and caspase‑3 in intervertebral disc degeneration, while endothelial cell–derived exosomal miR‐155 contributes to bone homeostasis by inhibiting osteoclast differentiation, offering novel therapeutic avenues for disorders like osteoporosis."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "27", "end_ref": "31"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Isabella Faraoni, Francesca Romana Antonetti, John Cardone, et al. "}, {"type": "b", "children": [{"type": "t", "text": "miR-155 gene: a typical multifunctional microRNA."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbadis.2009.02.013"}], "href": "https://doi.org/10.1016/j.bbadis.2009.02.013"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19268705"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19268705"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Maurizio Ceppi, Patricia M Pereira, Isabelle Dunand-Sauthier, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0811073106"}], "href": "https://doi.org/10.1073/pnas.0811073106"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19193853"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19193853"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Susan Kohlhaas, Oliver A Garden, Cheryl Scudamore, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.0803162"}], "href": "https://doi.org/10.4049/jimmunol.0803162"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19234151"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19234151"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Jan C Dudda, Bruno Salaun, Yun Ji, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunity (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.immuni.2012.12.006"}], "href": "https://doi.org/10.1016/j.immuni.2012.12.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23601686"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23601686"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Bin Tang, Bin Xiao, Zhen Liu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FEBS Lett (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.febslet.2010.02.063"}], "href": "https://doi.org/10.1016/j.febslet.2010.02.063"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20219467"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20219467"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Rocio T Martinez-Nunez, Fethi Louafi, Tilman Sanchez-Elsner "}, {"type": "b", "children": [{"type": "t", "text": "The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110.169367"}], "href": "https://doi.org/10.1074/jbc.M110.169367"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21097505"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21097505"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Ulrike Bruning, Luca Cerone, Zoltan Neufeld, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.01276-10"}], "href": "https://doi.org/10.1128/MCB.01276-10"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21807897"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21807897"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Rossana Trotta, Li Chen, David Ciarlariello, et al. "}, {"type": "b", "children": [{"type": "t", "text": "miR-155 regulates IFN-γ production in natural killer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2011-12-398099"}], "href": "https://doi.org/10.1182/blood-2011-12-398099"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22378844"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22378844"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Shuai Jiang, Hong-Wei Zhang, Ming-Hua Lu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-09-4250"}], "href": "https://doi.org/10.1158/0008-5472.CAN-09-4250"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20354188"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20354188"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Jingqin Lan, Li Sun, Feng Xu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-18-0014"}], "href": "https://doi.org/10.1158/0008-5472.CAN-18-0014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30401711"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30401711"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Thomas Greither, Lukasz F Grochola, Andrej Udelnow, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Cancer (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ijc.24687"}], "href": "https://doi.org/10.1002/ijc.24687"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19551852"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19551852"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Terry S Elton, Helina Selemon, Shane M Elton, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of the MIR155 host gene in physiological and pathological processes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Gene (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.gene.2012.12.009"}], "href": "https://doi.org/10.1016/j.gene.2012.12.009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23246696"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23246696"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "W Kong, L He, E J Richards, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncogene (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/onc.2012.636"}], "href": "https://doi.org/10.1038/onc.2012.636"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23353819"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23353819"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Graziana Gatto, Annalisa Rossi, Daniela Rossi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nucleic Acids Res (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/nar/gkn666"}], "href": "https://doi.org/10.1093/nar/gkn666"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18940871"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18940871"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Sam Mattiske, Rachel J Suetani, Paul M Neilsen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The oncogenic role of miR-155 in breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Epidemiol Biomarkers Prev (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/1055-9965.EPI-12-0173"}], "href": "https://doi.org/10.1158/1055-9965.EPI-12-0173"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22736789"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22736789"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Hajime Shibuya, Hisae Iinuma, Ryu Shimada, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncology (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1159/000323283"}], "href": "https://doi.org/10.1159/000323283"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21412018"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21412018"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Risheng Que, Guoping Ding, Jionghuang Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "World J Surg Oncol (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1477-7819-11-219"}], "href": "https://doi.org/10.1186/1477-7819-11-219"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24007214"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24007214"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Esmerina Tili, Jean-Jacques Michaille, Dorothee Wernicke, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1101795108"}], "href": "https://doi.org/10.1073/pnas.1101795108"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21383199"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21383199"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Fang Lu, Andreas Weidmer, Chang-Gong Liu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Epstein-Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.00752-08"}], "href": "https://doi.org/10.1128/JVI.00752-08"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18753206"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18753206"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Deepak Rai, Sang-Woo Kim, Morgan R McKeller, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0910667107"}], "href": "https://doi.org/10.1073/pnas.0910667107"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20133617"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20133617"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Yasuo Yamanaka, Hiroyuki Tagawa, Naoto Takahashi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2009-06-222794"}], "href": "https://doi.org/10.1182/blood-2009-06-222794"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19641183"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19641183"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Irene M Pedersen, Dennis Otero, Elaine Kao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Mol Med (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/emmm.200900028"}], "href": "https://doi.org/10.1002/emmm.200900028"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19890474"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19890474"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Maarten F Corsten, Anna Papageorgiou, Wouter Verhesen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCRESAHA.112.267443"}], "href": "https://doi.org/10.1161/CIRCRESAHA.112.267443"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22715471"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22715471"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Yu Sun, Minjie Wang, Guigao Lin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Serum microRNA-155 as a potential biomarker to track disease in breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0047003"}], "href": "https://doi.org/10.1371/journal.pone.0047003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23071695"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23071695"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Alessandra Ferrajoli, Tait D Shanafelt, Cristina Ivan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2013-01-478222"}], "href": "https://doi.org/10.1182/blood-2013-01-478222"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23821659"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23821659"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Manabu Mikamori, Daisaku Yamada, Hidetoshi Eguchi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/srep42339"}], "href": "https://doi.org/10.1038/srep42339"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28198398"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28198398"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Shuai Jiang, Ling-Fei Zhang, Hong-Wei Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO J (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/emboj.2012.45"}], "href": "https://doi.org/10.1038/emboj.2012.45"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22354042"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22354042"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Dany Anglicheau, Vijay K Sharma, Ruchuang Ding, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA expression profiles predictive of human renal allograft status."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0813121106"}], "href": "https://doi.org/10.1073/pnas.0813121106"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19289845"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19289845"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Fethi Louafi, Rocio T Martinez-Nunez, Tilman Sanchez-Elsner "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110.146852"}], "href": "https://doi.org/10.1074/jbc.M110.146852"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21036908"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21036908"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Hai-Qiang Wang, Xiao-Dong Yu, Zhi-Heng Liu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Pathol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/path.2931"}], "href": "https://doi.org/10.1002/path.2931"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21706480"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21706480"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Hongyuan Song, Xiaoqun Li, Zichang Zhao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nano Lett (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1021/acs.nanolett.9b00287"}], "href": "https://doi.org/10.1021/acs.nanolett.9b00287"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30968694"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30968694"}]}]}]}
|
Synonyms | MIRNA155, MIRN155, MIR-155 |
NCBI Gene ID | 406947 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
MIR155 has 2,038 functional associations with biological entities spanning 6 categories (molecular profile, chemical, disease, phenotype or trait, functional term, phrase or reference, cell line, cell type or tissue, gene, protein or microRNA) extracted from 23 datasets.
Click the + buttons to view associations for MIR155 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of MIR155 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with MIR155 gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of MIR155 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of MIR155 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of MIR155 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with MIR155 gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with MIR155 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at MIR155 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of MIR155 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of MIR155 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
GAD Gene-Disease Associations | diseases associated with MIR155 gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset. | |
GeneRIF Biological Term Annotations | biological terms co-occuring with MIR155 gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing MIR155 from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of MIR155 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of MIR155 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
HuGE Navigator Gene-Phenotype Associations | phenotypes associated with MIR155 gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of MIR155 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of MIR155 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by MIR155 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of MIR155 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MPO Gene-Phenotype Associations | phenotypes of transgenic mice caused by MIR155 gene mutations from the MPO Gene-Phenotype Associations dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at MIR155 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
WikiPathways Pathways 2014 | pathways involving MIR155 protein from the Wikipathways Pathways 2014 dataset. | |