MRE11 Gene

Name MRE11 homolog, double strand break repair nuclease
Description This gene encodes a nuclear protein involved in homologous recombination, telomere length maintenance, and DNA double-strand break repair. By itself, the protein has 3' to 5' exonuclease activity and endonuclease activity. The protein forms a complex with the RAD50 homolog; this complex is required for nonhomologous joining of DNA ends and possesses increased single-stranded DNA endonuclease and 3' to 5' exonuclease activities. In conjunction with a DNA ligase, this protein promotes the joining of noncomplementary ends in vitro using short homologies near the ends of the DNA fragments. This gene has a pseudogene on chromosome 3. Alternative splicing of this gene results in two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nMRE11 is the catalytic core of the MRE11–RAD50–NBS1 (MRN) complex that functions as a primary sensor of DNA double‐strand breaks (DSBs). It collaborates with its partners to recruit and activate key kinases such as ATM and ATR, thereby triggering checkpoint signaling and repair pathways. Although formation of γH2AX foci can occur independently of MRN, the complex is essential for efficient processing of broken DNA ends and the proper assembly of repair foci."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "7"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nMRE11’s intrinsic endonuclease and exonuclease activities are fundamental for DNA end resection, a process that generates the single‐stranded DNA necessary for commitment to homologous recombination repair. In coordination with regulatory factors such as CtIP, MRE11 directs bidirectional resection that not only facilitates high‐fidelity repair via homologous recombination but also influences the repair pathway choice when alternative nonhomologous end joining is operative."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "8", "end_ref": "11"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond DSB sensing and resection, MRE11 plays a pivotal role in maintaining genome stability by safeguarding replication fork integrity and telomere maintenance. Aberrant MRE11 activity contributes to pathological conditions such as ataxia‐telangiectasia–like disorder, mismatch repair–defective cancers, and BRCA2‐associated tumorigenesis. In BRCA2–deficient cells, for example, unrestrained MRE11 nuclease activity leads to replication fork degradation—a process that underlies synthetic lethality with PARP inhibition. Moreover, mutations in MRE11 have been implicated in breast cancer susceptibility and other degenerative disorders, while the development of specific nuclease inhibitors and alternative biomarkers underscores its emerging potential as a therapeutic target."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "12", "end_ref": "20"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Giuseppe Giannini, Elisabetta Ristori, Fabio Cerignoli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human MRE11 is inactivated in mismatch repair-deficient cancers."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/embo-reports/kvf044"}], "href": "https://doi.org/10.1093/embo-reports/kvf044"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11850399"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11850399"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Travis H Stracker, Christian T Carson, Matthew D Weitzman "}, {"type": "b", "children": [{"type": "t", "text": "Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature00863"}], "href": "https://doi.org/10.1038/nature00863"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12124628"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12124628"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Takahisa Furuta, Haruyuki Takemura, Zhi-Yong Liao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M300198200"}], "href": "https://doi.org/10.1074/jbc.M300198200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12660252"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12660252"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Christian T Carson, Rachel A Schwartz, Travis H Stracker, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Mre11 complex is required for ATM activation and the G2/M checkpoint."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO J (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/emboj/cdg630"}], "href": "https://doi.org/10.1093/emboj/cdg630"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "14657032"}], "href": "https://pubmed.ncbi.nlm.nih.gov/14657032"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Ji-Hoon Lee, Tanya T Paull "}, {"type": "b", "children": [{"type": "t", "text": "ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Science (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/science.1108297"}], "href": "https://doi.org/10.1126/science.1108297"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15790808"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15790808"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Fernando Moreno-Herrero, Martijn de Jager, Nynke H Dekker, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature03927"}], "href": "https://doi.org/10.1038/nature03927"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16163361"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16163361"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Ali Jazayeri, Jacob Falck, Claudia Lukas, et al. "}, {"type": "b", "children": [{"type": "t", "text": "ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1337"}], "href": "https://doi.org/10.1038/ncb1337"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16327781"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16327781"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Jeremy S Myers, David Cortez "}, {"type": "b", "children": [{"type": "t", "text": "Rapid activation of ATR by ionizing radiation requires ATM and Mre11."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M513265200"}], "href": "https://doi.org/10.1074/jbc.M513265200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16431910"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16431910"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Venugopal Bhaskara, Aude Dupré, Bettina Lengsfeld, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Rad50 adenylate kinase activity regulates DNA tethering by Mre11/Rad50 complexes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2007.01.028"}], "href": "https://doi.org/10.1016/j.molcel.2007.01.028"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17349953"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17349953"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Emilie Rass, Anastazja Grabarz, Isabelle Plo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Struct Mol Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nsmb.1641"}], "href": "https://doi.org/10.1038/nsmb.1641"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19633668"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19633668"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Amitabh V Nimonkar, Jochen Genschel, Eri Kinoshita, et al. "}, {"type": "b", "children": [{"type": "t", "text": "BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Genes Dev (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1101/gad.2003811"}], "href": "https://doi.org/10.1101/gad.2003811"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21325134"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21325134"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Domenico Delia, Maria Piane, Giacomo Buscemi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddh221"}], "href": "https://doi.org/10.1093/hmg/ddh221"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15269180"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15269180"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Huan-Ming Hsu, Hui-Chun Wang, Sou-Tong Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Breast cancer risk is associated with the genes encoding the DNA double-strand break repair Mre11/Rad50/Nbs1 complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Epidemiol Biomarkers Prev (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/1055-9965.EPI-07-0116"}], "href": "https://doi.org/10.1158/1055-9965.EPI-07-0116"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17932350"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17932350"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Jean-François Haince, Darin McDonald, Amélie Rodrigue, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M706734200"}], "href": "https://doi.org/10.1074/jbc.M706734200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18025084"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18025084"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Katharina Schlacher, Nicole Christ, Nicolas Siaud, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2011.03.041"}], "href": "https://doi.org/10.1016/j.cell.2011.03.041"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21565612"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21565612"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Songmin Ying, Freddie C Hamdy, Thomas Helleday "}, {"type": "b", "children": [{"type": "t", "text": "Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-11-3417"}], "href": "https://doi.org/10.1158/0008-5472.CAN-11-3417"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22447567"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22447567"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Moumita Chaki, Rannar Airik, Amiya K Ghosh, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2012.06.028"}], "href": "https://doi.org/10.1016/j.cell.2012.06.028"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22863007"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22863007"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Ji-Hoon Lee, Michael R Mand, Rajashree A Deshpande, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.460378"}], "href": "https://doi.org/10.1074/jbc.M113.460378"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23525106"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23525106"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Atsushi Shibata, Davide Moiani, Andrew S Arvai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2013.11.003"}], "href": "https://doi.org/10.1016/j.molcel.2013.11.003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24316220"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24316220"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Julien Lafrance-Vanasse, Gareth J Williams, John A Tainer "}, {"type": "b", "children": [{"type": "t", "text": "Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Prog Biophys Mol Biol (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.pbiomolbio.2014.12.004"}], "href": "https://doi.org/10.1016/j.pbiomolbio.2014.12.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25576492"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25576492"}]}]}]}
NCBI Gene ID 4361
API
Download Associations
Predicted Functions View MRE11's ARCHS4 Predicted Functions.
Co-expressed Genes View MRE11's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View MRE11's ARCHS4 Predicted Functions.

Functional Associations

MRE11 has 2,301 functional associations with biological entities spanning 6 categories (functional term, phrase or reference, chemical, disease, phenotype or trait, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 37 datasets.

Click the + buttons to view associations for MRE11 from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
CCLE Cell Line Proteomics Cell lines associated with MRE11 protein from the CCLE Cell Line Proteomics dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of MRE11 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 cellular components containing MRE11 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 cellular components containing MRE11 protein in low- or high-throughput protein localization assays from the COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 cellular components co-occuring with MRE11 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.
DeepCoverMOA Drug Mechanisms of Action small molecule perturbations with high or low expression of MRE11 protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset.
DISEASES Curated Gene-Disease Association Evidence Scores 2025 diseases involving MRE11 gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset.
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 diseases associated with MRE11 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with MRE11 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with MRE11 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with MRE11 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
GO Biological Process Annotations 2023 biological processes involving MRE11 gene from the curated GO Biological Process Annotations 2023 dataset.
GO Biological Process Annotations 2025 biological processes involving MRE11 gene from the curated GO Biological Process Annotations2025 dataset.
GO Cellular Component Annotations 2023 cellular components containing MRE11 protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Cellular Component Annotations 2025 cellular components containing MRE11 protein from the curated GO Cellular Component Annotations 2025 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by MRE11 gene from the curated GO Molecular Function Annotations 2023 dataset.
GO Molecular Function Annotations 2025 molecular functions performed by MRE11 gene from the curated GO Molecular Function Annotations 2025 dataset.
GTEx eQTL 2025 SNPs regulating expression of MRE11 gene from the GTEx eQTL 2025 dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of MRE11 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GTEx Tissue-Specific Aging Signatures tissue samples with high or low expression of MRE11 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset.
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures small molecule perturbations changing expression of MRE11 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset.
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures gene perturbations changing expression of MRE11 gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by MRE11 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MoTrPAC Rat Endurance Exercise Training tissue samples with high or low expression of MRE11 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset.
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles drug perturbations changing expression of MRE11 gene from the NIBR DRUG-seq U2OS MoA Box dataset.
PFOCR Pathway Figure Associations 2023 pathways involving MRE11 protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving MRE11 protein from the Wikipathways PFOCR 2024 dataset.
Reactome Pathways 2024 pathways involving MRE11 protein from the Reactome Pathways 2024 dataset.
Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures gene perturbations changing expression of MRE11 gene from the Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures dataset.
Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures gene perturbations changing expression of MRE11 gene from the Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of MRE11 gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of MRE11 gene from the RummaGEO Gene Perturbation Signatures dataset.
Tahoe Therapeutics Tahoe 100M Perturbation Atlas drug perturbations changing expression of MRE11 gene from the Tahoe Therapeutics Tahoe 100M Perturbation Atlas dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 tissues with high expression of MRE11 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 tissues with high expression of MRE11 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 tissues co-occuring with MRE11 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.
WikiPathways Pathways 2024 pathways involving MRE11 protein from the WikiPathways Pathways 2024 dataset.