OPA1 Gene

Name optic atrophy 1 (autosomal dominant)
Description The protein encoded by this gene is a nuclear-encoded mitochondrial protein with similarity to dynamin-related GTPases. The encoded protein localizes to the inner mitochondrial membrane and helps regulate mitochondrial stability and energy output. This protein also sequesters cytochrome c. Mutations in this gene have been associated with optic atrophy type 1, which is a dominantly inherited optic neuropathy resulting in progressive loss of visual acuity, leading in many cases to legal blindness. [provided by RefSeq, Aug 2017]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nOPA1 is a mitochondria‐resident, dynamin‐related GTPase that is anchored to the inner membrane and exposed to the intermembrane space, where it plays a central role in mitochondrial inner membrane fusion and the maintenance of cristae structure. Its function has been shown to be critical for preserving mitochondrial network integrity and bioenergetic competence, with studies demonstrating that the loss or down‐regulation of OPA1 leads to mitochondrial fragmentation, cristae disorganization, and the subsequent release of cytochrome c that triggers apoptosis. Moreover, OPA1 exists in multiple isoforms generated by alternative splicing and regulated proteolytic cleavage, with the long and short forms acting in concert to enable efficient mitochondrial fusion."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "14"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIn addition to its role in membrane fusion, OPA1 is pivotal for the regulation of mitochondrial quality control and apoptosis. Proteolytic processing of OPA1 in response to changes in mitochondrial membrane potential or apoptotic stimuli—mediated by proteases such as the m‐AAA protease, OMA1, or Yme1L—modulates the balance between the fusion‐competent long isoforms and the short forms that can participate in maintaining cristae integrity independently of fusion. Disruption of this proteolytic equilibrium not only accelerates cytochrome c release but also impairs mtDNA replication and distribution, thereby compromising mitochondrial function and sensitizing cells to apoptotic triggers."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "15", "end_ref": "28"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nFurthermore, mutations in the OPA1 gene have been firmly linked to a spectrum of human diseases, most notably autosomal dominant optic atrophy (ADOA) and its syndromic variants that include sensorineural deafness, ataxia, and peripheral neuropathy. Aberrations in OPA1 not only compromise mitochondrial fusion and disrupt cristae architecture but also disturb the stability of mitochondrial DNA and impair oxidative phosphorylation, thereby contributing to neurodegeneration and myopathy. Recent studies have also implicated OPA1 in broader cellular processes such as mitophagy, metabolic adaptation, and even angiogenesis, highlighting its multifaceted role in cellular homeostasis and the pathogenesis of mitochondrial disorders."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "29", "end_ref": "42"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Tin Aung, Louise Ocaka, Neil D Ebenezer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Genet (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00439-001-0645-7"}], "href": "https://doi.org/10.1007/s00439-001-0645-7"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11810296"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11810296"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Aurélien Olichon, Laurent J Emorine, Eric Descoins, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FEBS Lett (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0014-5793(02)02985-x"}], "href": "https://doi.org/10.1016/s0014-5793(02"}, {"type": "t", "text": "02985-x) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12123827"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12123827"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Masaaki Satoh, Toshiro Hamamoto, Norimasa Seo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0006-291x(02)02874-7"}], "href": "https://doi.org/10.1016/s0006-291x(02"}, {"type": "t", "text": "02874-7) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12504110"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12504110"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Aurélien Olichon, Laurent Baricault, Nicole Gas, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.C200677200"}], "href": "https://doi.org/10.1074/jbc.C200677200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12509422"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12509422"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Lorena Griparic, Nicole N van der Wel, Ian J Orozco, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M400920200"}], "href": "https://doi.org/10.1074/jbc.M400920200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "14970223"}], "href": "https://pubmed.ncbi.nlm.nih.gov/14970223"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Yang-ja Lee, Seon-Yong Jeong, Mariusz Karbowski, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.e04-04-0294"}], "href": "https://doi.org/10.1091/mbc.e04-04-0294"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15356267"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15356267"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Raffaele Lodi, Caterina Tonon, Maria Lucia Valentino, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Neurol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ana.20278"}], "href": "https://doi.org/10.1002/ana.20278"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15505825"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15505825"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Marielle Payne, Zhenglin Yang, Bradley J Katz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Ophthalmol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ajo.2004.06.011"}], "href": "https://doi.org/10.1016/j.ajo.2004.06.011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15531309"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15531309"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Damien Arnoult, Alain Grodet, Yang-Ja Lee, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M505970200"}], "href": "https://doi.org/10.1074/jbc.M505970200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16115883"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16115883"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Aurélien Olichon, Emmanuelle Guillou, Cécile Delettre, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mitochondrial dynamics and disease, OPA1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbamcr.2006.04.003"}], "href": "https://doi.org/10.1016/j.bbamcr.2006.04.003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16737747"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16737747"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Stéphane Duvezin-Caubet, Ravi Jagasia, Johannes Wagener, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M606059200"}], "href": "https://doi.org/10.1074/jbc.M606059200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17003040"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17003040"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "A Olichon, G Elachouri, L Baricault, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/sj.cdd.4402048"}], "href": "https://doi.org/10.1038/sj.cdd.4402048"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17024226"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17024226"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Amy C Cohn, Carmel Toomes, Catherine Potter, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Ophthalmol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ajo.2006.12.038"}], "href": "https://doi.org/10.1016/j.ajo.2006.12.038"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17306754"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17306754"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Seungmin Lee, Seon-Yong Jeong, Won-Chung Lim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M700679200"}], "href": "https://doi.org/10.1074/jbc.M700679200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17545159"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17545159"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Stéphane Duvezin-Caubet, Mirko Koppen, Johannes Wagener, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.e07-02-0164"}], "href": "https://doi.org/10.1091/mbc.e07-02-0164"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17615298"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17615298"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Zhiyin Song, Hsiuchen Chen, Maja Fiket, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.200704110"}], "href": "https://doi.org/10.1083/jcb.200704110"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17709429"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17709429"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Lorena Griparic, Takayuki Kanazawa, Alexander M van der Bliek "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.200704112"}], "href": "https://doi.org/10.1083/jcb.200704112"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17709430"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17709430"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Gavin Hudson, Patrizia Amati-Bonneau, Emma L Blakely, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Brain (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/brain/awm272"}], "href": "https://doi.org/10.1093/brain/awm272"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18065439"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18065439"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Patrizia Amati-Bonneau, Maria Lucia Valentino, Pascal Reynier, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Brain (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/brain/awm298"}], "href": "https://doi.org/10.1093/brain/awm298"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18158317"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18158317"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Claudia Zanna, Anna Ghelli, Anna Maria Porcelli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Brain (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/brain/awm335"}], "href": "https://doi.org/10.1093/brain/awm335"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18222991"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18222991"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Marco Spinazzi, Silvia Cazzola, Mario Bortolozzi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddn225"}], "href": "https://doi.org/10.1093/hmg/ddn225"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18678599"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18678599"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Le Chen, Qizhi Gong, James P Stice, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mitochondrial OPA1, apoptosis, and heart failure."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cardiovasc Res (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/cvr/cvp181"}], "href": "https://doi.org/10.1093/cvr/cvp181"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19493956"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19493956"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "P Yu-Wai-Man, P G Griffiths, G S Gorman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Multi-system neurological disease is common in patients with OPA1 mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Brain (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/brain/awq007"}], "href": "https://doi.org/10.1093/brain/awq007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20157015"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20157015"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Bao Jian Fan, Ke Liu, Dan Yi Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.09-4974"}], "href": "https://doi.org/10.1167/iovs.09-4974"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20357201"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20357201"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Patrick Yu-Wai-Man, Philip G Griffiths, Ailbhe Burke, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The prevalence and natural history of dominant optic atrophy due to OPA1 mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ophthalmology (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ophtha.2009.12.038"}], "href": "https://doi.org/10.1016/j.ophtha.2009.12.038"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20417570"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20417570"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Thomas Landes, Laurent J Emorine, Delphine Courilleau, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/embor.2010.50"}], "href": "https://doi.org/10.1038/embor.2010.50"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20436456"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20436456"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Patrick Yu-Wai-Man, Kamil S Sitarz, David C Samuels, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddq209"}], "href": "https://doi.org/10.1093/hmg/ddq209"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20484224"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20484224"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Ghizlane Elachouri, Sara Vidoni, Claudia Zanna, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Genome Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1101/gr.108696.110"}], "href": "https://doi.org/10.1101/gr.108696.110"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20974897"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20974897"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Pascale Belenguer, Luca Pellegrini "}, {"type": "b", "children": [{"type": "t", "text": "The dynamin GTPase OPA1: more than mitochondria?"}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbamcr.2012.08.004"}], "href": "https://doi.org/10.1016/j.bbamcr.2012.08.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22902477"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22902477"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Y E Kushnareva, A A Gerencser, B Bossy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/cdd.2012.128"}], "href": "https://doi.org/10.1038/cdd.2012.128"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23138851"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23138851"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Kuan Zhang, Huihui Li, Zhiyin Song "}, {"type": "b", "children": [{"type": "t", "text": "Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self-cleavage."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/embr.201338240"}], "href": "https://doi.org/10.1002/embr.201338240"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24719224"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24719224"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Bao Kong, Qi Wang, Ella Fung, et al. "}, {"type": "b", "children": [{"type": "t", "text": "p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M114.594812"}], "href": "https://doi.org/10.1074/jbc.M114.594812"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25112877"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25112877"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Valerio Carelli, Olimpia Musumeci, Leonardo Caporali, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Syndromic parkinsonism and dementia associated with OPA1 missense mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Neurol (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ana.24410"}], "href": "https://doi.org/10.1002/ana.24410"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25820230"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25820230"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Ronen Spiegel, Ann Saada, Padraig J Flannery, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Med Genet (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1136/jmedgenet-2015-103361"}], "href": "https://doi.org/10.1136/jmedgenet-2015-103361"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26561570"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26561570"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Christina Glytsou, Enrique Calvo, Sara Cogliati, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Rep (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.celrep.2016.11.049"}], "href": "https://doi.org/10.1016/j.celrep.2016.11.049"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27974214"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27974214"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Hakjoo Lee, Sylvia B Smith, Yisang Yoon "}, {"type": "b", "children": [{"type": "t", "text": "The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M116.762567"}], "href": "https://doi.org/10.1074/jbc.M116.762567"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28298442"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28298442"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Tadato Ban, Takaya Ishihara, Hiroto Kohno, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb3560"}], "href": "https://doi.org/10.1038/ncb3560"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28628083"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28628083"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Alexander Lang, Ruchika Anand, Simone Altinoluk-Hambüchen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Aging (Albany NY) (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/aging.101307"}], "href": "https://doi.org/10.18632/aging.101307"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29081403"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29081403"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Valentina Del Dotto, Mario Fogazza, Valerio Carelli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Eight human OPA1 isoforms, long and short: What are they for?"}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta Bioenerg (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbabio.2018.01.005"}], "href": "https://doi.org/10.1016/j.bbabio.2018.01.005"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29382469"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29382469"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Yifan Ge, Xiaojun Shi, Sivakumar Boopathy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Elife (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.7554/eLife.50973"}], "href": "https://doi.org/10.7554/eLife.50973"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31922487"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31922487"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Stéphanie Herkenne, Olivier Ek, Margherita Zamberlan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Metab (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cmet.2020.04.007"}], "href": "https://doi.org/10.1016/j.cmet.2020.04.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32315597"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32315597"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Chao Hu, Li Shu, Xiaoshuai Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "OPA1 and MICOS Regulate mitochondrial crista dynamics and formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Dis (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41419-020-03152-y"}], "href": "https://doi.org/10.1038/s41419-020-03152-y"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33130824"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33130824"}]}]}]}
Synonyms BERHS, MGM1, MTDPS14, NPG, NTG, LARGEG
Proteins OPA1_HUMAN
NCBI Gene ID 4976
API
Download Associations
Predicted Functions View OPA1's ARCHS4 Predicted Functions.
Co-expressed Genes View OPA1's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View OPA1's ARCHS4 Predicted Functions.

Functional Associations

OPA1 has 7,247 functional associations with biological entities spanning 8 categories (molecular profile, organism, disease, phenotype or trait, chemical, functional term, phrase or reference, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 105 datasets.

Click the + buttons to view associations for OPA1 from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles tissues with high or low expression of OPA1 gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles tissues with high or low expression of OPA1 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset.
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles tissues with high or low expression of OPA1 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset.
BioGPS Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset.
BioGPS Human Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of OPA1 gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset.
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of OPA1 gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset.
CCLE Cell Line Gene CNV Profiles cell lines with high or low copy number of OPA1 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset.
CCLE Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset.
CCLE Cell Line Proteomics Cell lines associated with OPA1 protein from the CCLE Cell Line Proteomics dataset.
ChEA Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of OPA1 gene from the CHEA Transcription Factor Binding Site Profiles dataset.
ChEA Transcription Factor Targets transcription factors binding the promoter of OPA1 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of OPA1 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
ClinVar Gene-Phenotype Associations phenotypes associated with OPA1 gene from the curated ClinVar Gene-Phenotype Associations dataset.
CMAP Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of OPA1 gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores cellular components containing OPA1 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores cellular components co-occuring with OPA1 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.
CORUM Protein Complexes protein complexs containing OPA1 protein from the CORUM Protein Complexes dataset.
COSMIC Cell Line Gene CNV Profiles cell lines with high or low copy number of OPA1 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset.
COSMIC Cell Line Gene Mutation Profiles cell lines with OPA1 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset.
CTD Gene-Chemical Interactions chemicals interacting with OPA1 gene/protein from the curated CTD Gene-Chemical Interactions dataset.
CTD Gene-Disease Associations diseases associated with OPA1 gene/protein from the curated CTD Gene-Disease Associations dataset.
DISEASES Curated Gene-Disease Association Evidence Scores 2025 diseases involving OPA1 gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset.
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 diseases associated with OPA1 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores diseases co-occuring with OPA1 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with OPA1 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with OPA1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with OPA1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
ENCODE Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at OPA1 gene from the ENCODE Histone Modification Site Profiles dataset.
ENCODE Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of OPA1 gene from the ENCODE Transcription Factor Binding Site Profiles dataset.
ENCODE Transcription Factor Targets transcription factors binding the promoter of OPA1 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset.
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells PubMedIDs of publications reporting gene signatures containing OPA1 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset.
GAD Gene-Disease Associations diseases associated with OPA1 gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.
GAD High Level Gene-Disease Associations diseases associated with OPA1 gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset.
GDSC Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset.
GeneRIF Biological Term Annotations biological terms co-occuring with OPA1 gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.
GeneSigDB Published Gene Signatures PubMedIDs of publications reporting gene signatures containing OPA1 from the GeneSigDB Published Gene Signatures dataset.
GEO Signatures of Differentially Expressed Genes for Diseases disease perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset.
GEO Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations kinase perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset.
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations transcription factor perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Viral Infections virus perturbations changing expression of OPA1 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset.
GO Biological Process Annotations 2015 biological processes involving OPA1 gene from the curated GO Biological Process Annotations 2015 dataset.
GO Biological Process Annotations 2023 biological processes involving OPA1 gene from the curated GO Biological Process Annotations 2023 dataset.
GO Cellular Component Annotations 2015 cellular components containing OPA1 protein from the curated GO Cellular Component Annotations 2015 dataset.
GO Cellular Component Annotations 2023 cellular components containing OPA1 protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Molecular Function Annotations 2015 molecular functions performed by OPA1 gene from the curated GO Molecular Function Annotations 2015 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by OPA1 gene from the curated GO Molecular Function Annotations 2023 dataset.
GTEx Tissue Gene Expression Profiles tissues with high or low expression of OPA1 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of OPA1 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GTEx Tissue Sample Gene Expression Profiles tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset.
GTEx Tissue-Specific Aging Signatures tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset.
GWASdb SNP-Disease Associations diseases associated with OPA1 gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset.
GWASdb SNP-Phenotype Associations phenotypes associated with OPA1 gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset.
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset.
HMDB Metabolites of Enzymes interacting metabolites for OPA1 protein from the curated HMDB Metabolites of Enzymes dataset.
HPA Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset.
HPA Tissue Gene Expression Profiles tissues with high or low expression of OPA1 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset.
HPA Tissue Protein Expression Profiles tissues with high or low expression of OPA1 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset.
HPA Tissue Sample Gene Expression Profiles tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset.
HPM Cell Type and Tissue Protein Expression Profiles cell types and tissues with high or low expression of OPA1 protein relative to other cell types and tissues from the HPM Cell Type and Tissue Protein Expression Profiles dataset.
HPO Gene-Disease Associations phenotypes associated with OPA1 gene by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset.
Hub Proteins Protein-Protein Interactions interacting hub proteins for OPA1 from the curated Hub Proteins Protein-Protein Interactions dataset.
HuGE Navigator Gene-Phenotype Associations phenotypes associated with OPA1 gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset.
IMPC Knockout Mouse Phenotypes phenotypes of mice caused by OPA1 gene knockout from the IMPC Knockout Mouse Phenotypes dataset.
InterPro Predicted Protein Domain Annotations protein domains predicted for OPA1 protein from the InterPro Predicted Protein Domain Annotations dataset.
JASPAR Predicted Transcription Factor Targets transcription factors regulating expression of OPA1 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles cell lines with high or low copy number of OPA1 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles cell lines with high or low expression of OPA1 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles cell lines with OPA1 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset.
KnockTF Gene Expression Profiles with Transcription Factor Perturbations transcription factor perturbations changing expression of OPA1 gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset.
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures small molecule perturbations changing expression of OPA1 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset.
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures gene perturbations changing expression of OPA1 gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset.
LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of OPA1 gene from the LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset.
LOCATE Curated Protein Localization Annotations cellular components containing OPA1 protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset.
LOCATE Predicted Protein Localization Annotations cellular components predicted to contain OPA1 protein from the LOCATE Predicted Protein Localization Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by OPA1 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MiRTarBase microRNA Targets microRNAs targeting OPA1 gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset.
MotifMap Predicted Transcription Factor Targets transcription factors regulating expression of OPA1 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset.
MoTrPAC Rat Endurance Exercise Training tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset.
MPO Gene-Phenotype Associations phenotypes of transgenic mice caused by OPA1 gene mutations from the MPO Gene-Phenotype Associations dataset.
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations gene perturbations changing expression of OPA1 gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset.
NURSA Protein Complexes protein complexs containing OPA1 protein recovered by IP-MS from the NURSA Protein Complexes dataset.
OMIM Gene-Disease Associations phenotypes associated with OPA1 gene from the curated OMIM Gene-Disease Associations dataset.
Pathway Commons Protein-Protein Interactions interacting proteins for OPA1 from the Pathway Commons Protein-Protein Interactions dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of OPA1 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations gene perturbations changing expression of OPA1 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PFOCR Pathway Figure Associations 2023 pathways involving OPA1 protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving OPA1 protein from the Wikipathways PFOCR 2024 dataset.
ProteomicsDB Cell Type and Tissue Protein Expression Profiles cell types and tissues with high or low expression of OPA1 protein relative to other cell types and tissues from the ProteomicsDB Cell Type and Tissue Protein Expression Profiles dataset.
Reactome Pathways 2024 pathways involving OPA1 protein from the Reactome Pathways 2024 dataset.
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles cell types and tissues with high or low expression of OPA1 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset.
Roadmap Epigenomics Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at OPA1 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of OPA1 gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of OPA1 gene from the RummaGEO Gene Perturbation Signatures dataset.
Sanger Dependency Map Cancer Cell Line Proteomics cell lines associated with OPA1 protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset.
TargetScan Predicted Conserved microRNA Targets microRNAs regulating expression of OPA1 gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset.
TargetScan Predicted Nonconserved microRNA Targets microRNAs regulating expression of OPA1 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset.
TCGA Signatures of Differentially Expressed Genes for Tumors tissue samples with high or low expression of OPA1 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores tissues with high expression of OPA1 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores tissues with high expression of OPA1 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores tissues co-occuring with OPA1 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.
WikiPathways Pathways 2024 pathways involving OPA1 protein from the WikiPathways Pathways 2024 dataset.