Name | PCNA clamp associated factor |
Description | Enables chromatin binding activity and molecular adaptor activity. Involved in several processes, including DNA metabolic process; centrosome cycle; and response to UV. Located in centrosome; nucleus; and perinuclear region of cytoplasm. [provided by Alliance of Genome Resources, Mar 2025] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nPCLAF, also known as p15(PAF), KIAA0101, or NS5ATP9, is an intrinsically disordered protein that binds the proliferating cell nuclear antigen (PCNA) and plays a central role in DNA replication and repair. Its conserved PCNA‐interacting (PIP) motif allows PCLAF to engage with the PCNA sliding clamp, thereby regulating processes such as replicative synthesis, translesion DNA repair and the bypass of replication‐fork–blocking lesions. Dynamic modifications—for example, the double mono‐ubiquitylation of PCLAF in response to DNA damage – trigger its timely removal from PCNA to ensure proper lesion bypass and maintain genomic integrity. Structural studies have further revealed that PCLAF not only binds the front face of PCNA but also traverses its inner channel, acting like a flexible “belt” that modulates clamp processivity."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "7"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIn addition to its functions in DNA metabolism, PCLAF is tightly regulated during the cell cycle and plays a significant role in oncogenic signaling. Its expression is controlled, in part, by APC/C‐mediated degradation and the Rb/E2F transcriptional axis—with levels peaking during S and G2 phases—to facilitate both proper cell cycle progression and DNA synthesis. PCLAF influences several key signaling pathways including Wnt/β‐catenin, MAPK and PI3K/AKT/mTOR, and it has been implicated in maintaining cancer cell stemness, centrosome homeostasis and resistance to apoptosis and chemotherapeutic agents. Aberrant elevation of PCLAF promotes tumor progression in a wide variety of cancers—such as colon, breast, adrenocortical, esophageal, pancreatic, and gliomas—by mechanisms that include the transcriptional activation of genes like c‐Myc and modulation of downstream effectors."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "8", "end_ref": "27"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nMoreover, the regulation of PCLAF by microRNAs, alternative splicing and associated noncoding RNA networks underscores its clinical relevance as both a prognostic biomarker and a therapeutic target. Elevated expression of PCLAF in tumor tissues and even in peripheral blood cells has been correlated with advanced disease stage, metastasis and poor overall survival in hepatocellular, gastric and non–small cell lung cancers. Regulatory axes involving miR-30a-5p, miR-1216a-15p and circRNA networks—as well as interactions with mitotic factors such as UbcH10—offer potential avenues for targeted intervention. In rectal and ovarian cancers, modulation of PCLAF not only influences radiotherapy sensitivity and chemoresistance but also impacts cell cycle progression and cancer stem cell self-renewal, providing preclinical evidence that the PCLAF signaling axis may represent a promising target in cancer therapy."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "28", "end_ref": "38"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Lou K Povlsen, Petra Beli, Sebastian A Wagner, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb2579"}], "href": "https://doi.org/10.1038/ncb2579"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23000965"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23000965"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Michael J Emanuele, Alberto Ciccia, Andrew E H Elia, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1106136108"}], "href": "https://doi.org/10.1073/pnas.1106136108"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21628590"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21628590"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "L Turchi, M Fareh, E Aberdam, et al. "}, {"type": "b", "children": [{"type": "t", "text": "ATF3 and p15PAF are novel gatekeepers of genomic integrity upon UV stress."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/cdd.2009.2"}], "href": "https://doi.org/10.1038/cdd.2009.2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19219066"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19219066"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Alfredo De Biasio, Alain Ibáñez de Opakua, Gulnahar B Mortuza, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms7439"}], "href": "https://doi.org/10.1038/ncomms7439"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25762514"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25762514"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Fiona Simpson, Kelly Lammerts van Bueren, Natalie Butterfield, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Cell Res (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.yexcr.2005.09.020"}], "href": "https://doi.org/10.1016/j.yexcr.2005.09.020"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16288740"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16288740"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Tiago N Cordeiro, Po-Chia Chen, Alfredo De Biasio, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Disentangling polydispersity in the PCNA-p15PAF complex, a disordered, transient and multivalent macromolecular assembly."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nucleic Acids Res (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/nar/gkw1183"}], "href": "https://doi.org/10.1093/nar/gkw1183"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28180305"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28180305"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Qi Wang, Yongsheng Wang, Yue Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "NS5ATP9 contributes to inhibition of cell proliferation by hepatitis C virus (HCV) nonstructural protein 5A (NS5A) via MEK/extracellular signal regulated kinase (ERK) pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Mol Sci (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/ijms140510539"}], "href": "https://doi.org/10.3390/ijms140510539"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23698777"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23698777"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Hae-Yun Jung, Sohee Jun, Moonsup Lee, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2013.08.028"}], "href": "https://doi.org/10.1016/j.molcel.2013.08.028"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24055345"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24055345"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Xin Wang, Youn-Sang Jung, Sohee Jun, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms10633"}], "href": "https://doi.org/10.1038/ncomms10633"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26843124"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26843124"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Zeina Kais, Sanford H Barsky, Haritha Mathsyaraja, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 interacts with BRCA1 and regulates centrosome number."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cancer Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/1541-7786.MCR-10-0503"}], "href": "https://doi.org/10.1158/1541-7786.MCR-10-0503"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21673012"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21673012"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Meenu Jain, Lisa Zhang, Erin E Patterson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 is overexpressed, and promotes growth and invasion in adrenal cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0026866"}], "href": "https://doi.org/10.1371/journal.pone.0026866"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22096502"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22096502"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Lijuan Liu, Xiaobei Chen, Shuixiang Xie, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Variant 1 of KIAA0101, overexpressed in hepatocellular carcinoma, prevents doxorubicin-induced apoptosis by inhibiting p53 activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hepatology (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/hep.25834"}], "href": "https://doi.org/10.1002/hep.25834"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22576474"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22576474"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Derrick Sek Tong Ong, Baoli Hu, Yan Wing Ho, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF promotes stemness and radioresistance of glioma stem cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1708122114"}], "href": "https://doi.org/10.1073/pnas.1708122114"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29073105"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29073105"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Kazunori Mizutani, Masamitsu Onda, Shinichi Asaka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Overexpressed in anaplastic thyroid carcinoma-1 (OEATC-1) as a novel gene responsible for anaplastic thyroid carcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/cncr.20988"}], "href": "https://doi.org/10.1002/cncr.20988"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15789362"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15789362"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Sohee Jun, Sunhye Lee, Han-Cheon Kim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF-mediated MAPK signaling hyperactivation via LAMTOR3 induces pancreatic tumorigenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Rep (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.celrep.2013.09.026"}], "href": "https://doi.org/10.1016/j.celrep.2013.09.026"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24209743"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24209743"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Chih-Ning Chang, Mow-Jung Feng, Yu-Ling Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0061196"}], "href": "https://doi.org/10.1371/journal.pone.0061196"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23593430"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23593430"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Kun Zhu, Dongmei Diao, Chengxue Dang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Elevated KIAA0101 expression is a marker of recurrence in human gastric cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Sci (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/cas.12083"}], "href": "https://doi.org/10.1111/cas.12083"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23240630"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23240630"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Yao Cheng, Kang Li, Dongmei Diao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Expression of KIAA0101 protein is associated with poor survival of esophageal cancer patients and resistance to cisplatin treatment in vitro."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Lab Invest (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/labinvest.2013.124"}], "href": "https://doi.org/10.1038/labinvest.2013.124"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24145239"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24145239"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Moon Jong Kim, Christopher Cervantes, Youn-Sang Jung, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2021.02.001"}], "href": "https://doi.org/10.1016/j.molcel.2021.02.001"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33626321"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33626321"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Wei Lv, Benhua Su, Yuyang Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 inhibition suppresses cell proliferation and cell cycle progression by promoting the interaction between p53 and Sp1 in breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2018.06.046"}], "href": "https://doi.org/10.1016/j.bbrc.2018.06.046"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29902451"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29902451"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Hu Zhao, Xiaofeng Lai, Wei Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Artif Cells Nanomed Biotechnol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/21691401.2018.1553783"}], "href": "https://doi.org/10.1080/21691401.2018.1553783"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30669858"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30669858"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Shengjun Fan, Xin Li, Lu Tie, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 is associated with human renal cell carcinoma proliferation and migration induced by erythropoietin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.5876"}], "href": "https://doi.org/10.18632/oncotarget.5876"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26575329"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26575329"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Chengjuan Jin, Zhaojian Liu, Yingwei Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PCNA-associated factor P15"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "PAF"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": " , targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Cancer (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ijc.31800"}], "href": "https://doi.org/10.1002/ijc.31800"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30129654"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30129654"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Minglei Guo, Jinjun Li, Dafang Wan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 (OEACT-1), an expressionally down-regulated and growth-inhibitory gene in human hepatocellular carcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Cancer (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1471-2407-6-109"}], "href": "https://doi.org/10.1186/1471-2407-6-109"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16646990"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16646990"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "M Quan, S Liu, G Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A functional role for NS5ATP9 in the induction of HCV NS5A-mediated autophagy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Viral Hepat (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/jvh.12155"}], "href": "https://doi.org/10.1111/jvh.12155"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24750205"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24750205"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Moon Jong Kim, Bo Xia, Han Na Suh, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Dev Cell (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.devcel.2018.02.010"}], "href": "https://doi.org/10.1016/j.devcel.2018.02.010"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29533773"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29533773"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Iman A Abdelgawad, Noha H Radwan, Hala R Hassanein "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 mRNA expression in the peripheral blood of hepatocellular carcinoma patients: Association with some clinicopathological features."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin Biochem (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.clinbiochem.2015.12.016"}], "href": "https://doi.org/10.1016/j.clinbiochem.2015.12.016"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26968109"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26968109"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Xiaomei Su, Tao Zhang, Peng Cheng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 mRNA overexpression in peripheral blood mononuclear cells acts as predictive marker for hepatic cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Tumour Biol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s13277-013-1353-3"}], "href": "https://doi.org/10.1007/s13277-013-1353-3"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24197986"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24197986"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Ye Zhang, Hongmin Yao, Ying Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Circular RNA TADA2A promotes proliferation and migration via modulating of miR‑638/KIAA0101 signal in non‑small cell lung cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncol Rep (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3892/or.2021.8152"}], "href": "https://doi.org/10.3892/or.2021.8152"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "34296306"}], "href": "https://pubmed.ncbi.nlm.nih.gov/34296306"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Han Lei, Kun Wang, Tongying Jiang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "KIAA0101 and UbcH10 interact to regulate non-small cell lung cancer cell proliferation by disrupting the function of the spindle assembly checkpoint."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Cancer (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/s12885-020-07463-3"}], "href": "https://doi.org/10.1186/s12885-020-07463-3"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33008389"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33008389"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Rong Yan, Kun Zhu, Chengxue Dang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.9606"}], "href": "https://doi.org/10.18632/oncotarget.9606"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27246972"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27246972"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Lijuan Liu, Youyi Liu, Xiaobei Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Variant 2 of KIAA0101, antagonizing its oncogenic variant 1, might be a potential therapeutic strategy in hepatocellular carcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.16702"}], "href": "https://doi.org/10.18632/oncotarget.16702"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28410205"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28410205"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Tuanhe Sun, Qi An, Rong Yan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA‑216a‑5p suppresses esophageal squamous cell carcinoma progression by targeting KIAA0101."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncol Rep (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3892/or.2020.7751"}], "href": "https://doi.org/10.3892/or.2020.7751"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32901882"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32901882"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Mei Li, Xu-Dong Mu, Juan-Rong Song, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAF enhances cancer stem cell properties via β-catenin signaling in hepatocellular carcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Cycle (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/15384101.2021.1919826"}], "href": "https://doi.org/10.1080/15384101.2021.1919826"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33970778"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33970778"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Min Quan, Shunai Liu, Qi Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "NS5ATP9 Promotes Beclin 1-Dependent Starvation-Induced Autophagy of Hepatoblastoma Cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biochem (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jcb.25111"}], "href": "https://doi.org/10.1002/jcb.25111"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25649430"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25649430"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Dawei Yuan, Kun Zhu, Chengxue Dang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "NS5ATP9 mRNA levels in peripheral blood mononuclear cells predict prognosis in patients with gastric cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Med Oncol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s12032-014-0106-5"}], "href": "https://doi.org/10.1007/s12032-014-0106-5"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24996800"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24996800"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Weiyu Xu, Xuezhu Wang, Xiaoqian Wu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Prognostic value and underlying mechanism of KIAA0101 in hepatocellular carcinoma: database mining and co-expression analysis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Aging (Albany NY) (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/aging.103704"}], "href": "https://doi.org/10.18632/aging.103704"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32855364"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32855364"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Yamei Chen, Ying Jin, Hangjie Ying, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Strahlenther Onkol (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00066-020-01708-7"}], "href": "https://doi.org/10.1007/s00066-020-01708-7"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33231712"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33231712"}]}]}]}
|
NCBI Gene ID | 9768 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
PCLAF has 5,668 functional associations with biological entities spanning 5 categories (functional term, phrase or reference, chemical, disease, phenotype or trait, cell line, cell type or tissue, gene, protein or microRNA) extracted from 32 datasets.
Click the + buttons to view associations for PCLAF from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
CCLE Cell Line Proteomics | Cell lines associated with PCLAF protein from the CCLE Cell Line Proteomics dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with PCLAF gene from the CellMarker Gene-Cell Type Associations dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing PCLAF protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with PCLAF protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
DeepCoverMOA Drug Mechanisms of Action | small molecule perturbations with high or low expression of PCLAF protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by PCLAF gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 | diseases associated with PCLAF gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with PCLAF gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with PCLAF gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
DisGeNET Gene-Phenotype Associations | phenotypes associated with PCLAF gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
GO Biological Process Annotations 2023 | biological processes involving PCLAF gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving PCLAF gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing PCLAF protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing PCLAF protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of PCLAF gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
HuBMAP Azimuth Cell Type Annotations | cell types associated with PCLAF gene from the HuBMAP Azimuth Cell Type Annotations dataset. | |
IMPC Knockout Mouse Phenotypes | phenotypes of mice caused by PCLAF gene knockout from the IMPC Knockout Mouse Phenotypes dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of PCLAF gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures | gene perturbations changing expression of PCLAF gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by PCLAF gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of PCLAF gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
PFOCR Pathway Figure Associations 2023 | pathways involving PCLAF protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
PFOCR Pathway Figure Associations 2024 | pathways involving PCLAF protein from the Wikipathways PFOCR 2024 dataset. | |
Reactome Pathways 2024 | pathways involving PCLAF protein from the Reactome Pathways 2024 dataset. | |
Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of PCLAF gene from the Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures dataset. | |
Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of PCLAF gene from the Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures dataset. | |
Replogle et al., Cell, 2022 RPE1 Essential Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of PCLAF gene from the Replogle et al., Cell, 2022 RPE1 Essential Perturb-seq Gene Perturbation Signatures dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of PCLAF gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of PCLAF gene from the RummaGEO Gene Perturbation Signatures dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of PCLAF protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of PCLAF protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with PCLAF protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |