SELENON Gene

Name selenoprotein N
Description This gene encodes a glycoprotein that is localized in the endoplasmic reticulum. It plays an important role in cell protection against oxidative stress, and in the regulation of redox-related calcium homeostasis. Mutations in this gene are associated with early onset muscle disorders, referred to as SEPN1-related myopathy. SEPN1-related myopathy consists of 4 autosomal recessive disorders, originally thought to be separate entities: rigid spine muscular dystrophy (RSMD1), the classical form of multiminicore disease, desmin related myopathy with Mallory-body like inclusions, and congenital fiber-type disproportion (CFTD). This protein is a selenoprotein, containing the rare amino acid selenocysteine (Sec). Sec is encoded by the UGA codon, which normally signals translation termination. The 3' UTRs of selenoprotein mRNAs contain a conserved stem-loop structure, designated the Sec insertion sequence (SECIS) element, that is necessary for the recognition of UGA as a Sec codon, rather than as a stop signal. A second stop-codon redefinition element (SRE) adjacent to the UGA codon has been identified in this gene (PMID:15791204). SRE is a phylogenetically conserved stem-loop structure that stimulates readthrough at the UGA codon, and augments the Sec insertion efficiency by SECIS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Dec 2016]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nSelenoprotein N (SelN), encoded by the SEPN1 gene, is an endoplasmic reticulum–resident selenoprotein uniquely implicated in a spectrum of congenital myopathies including multiminicore disease, rigid spine muscular dystrophy, congenital fiber‐type disproportion, and desmin‐related myopathies. Genetic studies have revealed that point mutations, ranging from missense and nonsense changes to those affecting regulatory elements—such as the SECIS and SRE domains required for the specialized co‐translational incorporation of selenocysteine—disrupt SelN expression and function. These alterations result in reduced protein levels and abnormal expression patterns in muscle tissue, underscoring the critical role of SelN in maintaining normal myofiber structure and function."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "5"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nFunctional experiments have further illuminated SelN’s role as a key regulator of intracellular calcium homeostasis. It operates as a calcium sensor within the endoplasmic reticulum by utilizing a luminal EF‐hand domain that dynamically alters its oligomeric state in response to calcium depletion. Through redox‐dependent interactions, SelN modulates the activity of major calcium channels—especially the ryanodine receptor (RyR)—and functionally couples with the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) to maintain proper calcium fluxes. These processes are essential not only for skeletal muscle excitation–contraction coupling but also for the regulation of oxidant stress signaling, thereby linking defective calcium and redox homeostasis to the pathogenesis of SEPN1‐related myopathies."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "6", "end_ref": "10"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its pivotal role in calcium sensing, SelN is emerging as a key mediator in muscle development, regeneration, and bioenergetics. Investigations in both animal models and patient-derived tissues have demonstrated that deficient SelN disrupts endoplasmic reticulum–mitochondria contacts, thereby impairing calcium transfer necessary for optimal mitochondrial function and ATP production. This bioenergetic failure is associated with muscle weakness, axial hypotonia, and the development of core lesions, while altered SelN splicing—potentially driven by exonization events—suggests additional layers of evolutionary and tissue‐specific regulation. Moreover, SelN deficiency appears to compromise satellite cell maintenance and modulate reactive oxygen species responses, factors that collectively contribute to the progressive clinical phenotype observed in SEPN1‐related myopathies, even extending to atypical late-onset cases. Such multifaceted roles emphasize the importance of SelN in sustaining muscle integrity and energy metabolism."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "11", "end_ref": "23"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Ana Ferreiro, Susana Quijano-Roy, Claire Pichereau, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Hum Genet (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1086/342719"}], "href": "https://doi.org/10.1086/342719"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12192640"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12192640"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Valérie Allamand, Pascale Richard, Alain Lescure, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/sj.embor.7400648"}], "href": "https://doi.org/10.1038/sj.embor.7400648"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16498447"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16498447"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Yuji Okamoto, Hiroshi Takashima, Itsuro Higuchi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neurogenetics (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10048-006-0046-0"}], "href": "https://doi.org/10.1007/s10048-006-0046-0"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16779558"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16779558"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Baijayanta Maiti, Sandrine Arbogast, Valérie Allamand, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A mutation in the SEPN1 selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to SEPN1-related myopathy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mutat (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/humu.20879"}], "href": "https://doi.org/10.1002/humu.20879"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19067361"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19067361"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Sandrine Arbogast, Maud Beuvin, Bodvaël Fraysse, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Neurol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ana.21644"}], "href": "https://doi.org/10.1002/ana.21644"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19557870"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19557870"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Michael J Jurynec, Ruohong Xia, John J Mackrill, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0806015105"}], "href": "https://doi.org/10.1073/pnas.0806015105"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18713863"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18713863"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Bong Sun Kim, Jin Sun Jung, Jin Hwa Jang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nuclear Argonaute 2 regulates adipose tissue-derived stem cell survival through direct control of miR10b and selenoprotein N1 expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Aging Cell (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1474-9726.2011.00670.x"}], "href": "https://doi.org/10.1111/j.1474-9726.2011.00670.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21241449"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21241449"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Perrine Castets, Alain Lescure, Pascale Guicheney, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selenoprotein N in skeletal muscle: from diseases to function."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Mol Med (Berl) (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00109-012-0896-x"}], "href": "https://doi.org/10.1007/s00109-012-0896-x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22527882"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22527882"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Anne Filipe, Alexander Chernorudskiy, Sandrine Arbogast, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41418-020-0587-z"}], "href": "https://doi.org/10.1038/s41418-020-0587-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32661288"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32661288"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Alexander Chernorudskiy, Ersilia Varone, Sara Francesca Colombo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.2003847117"}], "href": "https://doi.org/10.1073/pnas.2003847117"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32817544"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32817544"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Homa Tajsharghi, Niklas Darin, Mar Tulinius, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neuromuscul Disord (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.nmd.2004.11.004"}], "href": "https://doi.org/10.1016/j.nmd.2004.11.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15792869"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15792869"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "A D'Amico, G Haliloglu, P Richard, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Two patients with 'Dropped head syndrome' due to mutations in LMNA or SEPN1 genes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neuromuscul Disord (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.nmd.2005.03.006"}], "href": "https://doi.org/10.1016/j.nmd.2005.03.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15961312"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15961312"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Nigel F Clarke, Warren Kidson, Susana Quijano-Roy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SEPN1: associated with congenital fiber-type disproportion and insulin resistance."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Neurol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ana.20761"}], "href": "https://doi.org/10.1002/ana.20761"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16365872"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16365872"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Lan Lin, Shihao Shen, Anne Tye, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Diverse splicing patterns of exonized Alu elements in human tissues."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Genet (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pgen.1000225"}], "href": "https://doi.org/10.1371/journal.pgen.1000225"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18841251"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18841251"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "R Cagliani, M E Fruguglietti, A Berardinelli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "New molecular findings in congenital myopathies due to selenoprotein N gene mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Neurol Sci (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.jns.2010.09.011"}], "href": "https://doi.org/10.1016/j.jns.2010.09.011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20937510"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20937510"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Anna Ardissone, Cinzia Bragato, Flavia Blasevich, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SEPN1-related myopathy in three patients: novel mutations and diagnostic clues."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Eur J Pediatr (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00431-015-2685-3"}], "href": "https://doi.org/10.1007/s00431-015-2685-3"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26780752"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26780752"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Yi Dai, Shengran Liang, Yan Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Targeted next generation sequencing identifies two novel mutations in SEPN1 in rigid spine muscular dystrophy 1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.13337"}], "href": "https://doi.org/10.18632/oncotarget.13337"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27863379"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27863379"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Fumeng Huang, Yuanxu Guo, Li Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "High glucose and TGF-β1 reduce expression of endoplasmic reticulum-resident selenoprotein S and selenoprotein N in human mesangial cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ren Fail (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/0886022X.2019.1641413"}], "href": "https://doi.org/10.1080/0886022X.2019.1641413"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31880214"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31880214"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Rocio N Villar-Quiles, Maja von der Hagen, Corinne Métay, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The clinical, histologic, and genotypic spectrum of "}, {"type": "a", "children": [{"type": "t", "text": "i"}], "href": "i"}, {"type": "t", "text": "SEPN1"}, {"type": "a", "children": [{"type": "t", "text": "/i"}], "href": "/i"}, {"type": "t", "text": "-related myopathy: A case series."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neurology (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1212/WNL.0000000000010327"}], "href": "https://doi.org/10.1212/WNL.0000000000010327"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32796131"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32796131"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Malihe Mohamadian, Mohsen Naseri, Pegah Ghandil, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The first report of two homozygous sequence variants in FKRP and SELENON genes associated with syndromic congenital muscular dystrophy in Iran: Further expansion of the clinical phenotypes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Gene Med (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jgm.3265"}], "href": "https://doi.org/10.1002/jgm.3265"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32864802"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32864802"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Arpana Silwal, Anna Sarkozy, Mariacristina Scoto, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selenoprotein N-related myopathy: a retrospective natural history study to guide clinical trials."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Clin Transl Neurol (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/acn3.51218"}], "href": "https://doi.org/10.1002/acn3.51218"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33037864"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33037864"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Yohei Iwafuchi, Maiko Umeda, Yumi Yamada, et al. "}, {"type": "b", "children": [{"type": "t", "text": "[Selenoprotein-related myopathy in a patient with old-age-onset type 2 respiratory failure: a case report]."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Rinsho Shinkeigaku (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.5692/clinicalneurol.cn-001544"}], "href": "https://doi.org/10.5692/clinicalneurol.cn-001544"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33762497"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33762497"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Karlijn Bouman, Frederik M A van den Heuvel, Reinder Evertz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cardiac Involvement in LAMA2-Related Muscular Dystrophy and SELENON-Related Congenital Myopathy: A Case Series."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Neuromuscul Dis (2024)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3233/JND-230190"}], "href": "https://doi.org/10.3233/JND-230190"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "39177608"}], "href": "https://pubmed.ncbi.nlm.nih.gov/39177608"}]}]}]}
NCBI Gene ID 57190
API
Download Associations
Predicted Functions View SELENON's ARCHS4 Predicted Functions.
Co-expressed Genes View SELENON's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View SELENON's ARCHS4 Predicted Functions.

Functional Associations

SELENON has 1,972 functional associations with biological entities spanning 6 categories (functional term, phrase or reference, chemical, disease, phenotype or trait, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 30 datasets.

Click the + buttons to view associations for SELENON from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
CCLE Cell Line Proteomics Cell lines associated with SELENON protein from the CCLE Cell Line Proteomics dataset.
CellMarker Gene-Cell Type Associations cell types associated with SELENON gene from the CellMarker Gene-Cell Type Associations dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of SELENON gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 cellular components containing SELENON protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 cellular components containing SELENON protein in low- or high-throughput protein localization assays from the COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 cellular components co-occuring with SELENON protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.
DeepCoverMOA Drug Mechanisms of Action small molecule perturbations with high or low expression of SELENON protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset.
DepMap CRISPR Gene Dependency cell lines with fitness changed by SELENON gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset.
DISEASES Curated Gene-Disease Association Evidence Scores 2025 diseases involving SELENON gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with SELENON gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with SELENON gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with SELENON gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
GO Biological Process Annotations 2023 biological processes involving SELENON gene from the curated GO Biological Process Annotations 2023 dataset.
GO Biological Process Annotations 2025 biological processes involving SELENON gene from the curated GO Biological Process Annotations2025 dataset.
GO Cellular Component Annotations 2023 cellular components containing SELENON protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Cellular Component Annotations 2025 cellular components containing SELENON protein from the curated GO Cellular Component Annotations 2025 dataset.
GTEx eQTL 2025 SNPs regulating expression of SELENON gene from the GTEx eQTL 2025 dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of SELENON gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
HuBMAP Azimuth Cell Type Annotations cell types associated with SELENON gene from the HuBMAP Azimuth Cell Type Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by SELENON gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MoTrPAC Rat Endurance Exercise Training tissue samples with high or low expression of SELENON gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset.
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles drug perturbations changing expression of SELENON gene from the NIBR DRUG-seq U2OS MoA Box dataset.
PFOCR Pathway Figure Associations 2023 pathways involving SELENON protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving SELENON protein from the Wikipathways PFOCR 2024 dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of SELENON gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of SELENON gene from the RummaGEO Gene Perturbation Signatures dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 tissues with high expression of SELENON protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 tissues with high expression of SELENON protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 tissues co-occuring with SELENON protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.
WikiPathways Pathways 2024 pathways involving SELENON protein from the WikiPathways Pathways 2024 dataset.