HGNC Family | Endogenous ligands, CD molecules (CD) |
Name | selectin P ligand |
Description | This gene encodes a glycoprotein that functions as a high affinity counter-receptor for the cell adhesion molecules P-, E- and L- selectin expressed on myeloid cells and stimulated T lymphocytes. As such, this protein plays a critical role in leukocyte trafficking during inflammation by tethering of leukocytes to activated platelets or endothelia expressing selectins. This protein requires two post-translational modifications, tyrosine sulfation and the addition of the sialyl Lewis x tetrasaccharide (sLex) to its O-linked glycans, for its high-affinity binding activity. Aberrant expression of this gene and polymorphisms in this gene are associated with defects in the innate and adaptive immune response. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Apr 2011] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nP‐selectin glycoprotein ligand‐1 (SELPLG), also known as PSGL‐1, is central to the initial tethering and rolling of leukocytes on activated vascular endothelium. Under mechanical stress, its binding to selectins exhibits a dual catch–slip bond behavior that prolongs bond lifetimes under low forces yet dissipates them when forces exceed a particular threshold—thereby providing a finely tuned mechanism for leukocyte adhesion and subsequent integrin activation. Critical post‐translational modifications (such as tyrosine sulfation and specific O‐glycosylation of its N‐terminal domain) determine its binding affinity and ligand specificity during these dynamic interactions."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "7"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond adhesion per se, SELPLG plays a pivotal role in orchestrating immune cell trafficking and initiating intracellular signaling. It is highly expressed on diverse leukocyte subsets—including skin‐resident T cells, mast cell progenitors and monocytes—and thereby directs targeted homing to peripheral tissues and the central nervous system. Engagement of SELPLG initiates intracellular cascades through its association with adaptor molecules (such as the ERM proteins and the tyrosine kinase Syk), allowing it not only to mediate physical adhesion but also to function as an immunoregulatory receptor. Moreover, distinct glycoforms of SELPLG—such as those decorated with the cutaneous lymphocyte‐associated antigen (CLA)—enhance tissue‐specific recruitment, and its surface expression is modulated by inflammatory cytokines."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "8", "end_ref": "26"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nSELPLG also functions as a receptor for pathogens, thereby influencing viral tropism and host susceptibility. Multiple studies have demonstrated that enterovirus 71 exploits the N‐terminal region of SELPLG—with its requisite tyrosine-sulfated residues—to gain entry into leukocytes in a strain‐dependent manner. In parallel, SELPLG has been implicated in mediating intrinsic resistance against HIV, as its incorporation into viral particles and subsequent targeting by viral accessory proteins modulate infectivity."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "27", "end_ref": "32"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIn addition to its roles in adhesion and pathogen interactions, SELPLG contributes to thrombosis, cancer metastasis, and the modulation of therapeutic cell adhesion. Its expression on leukocyte‐derived microparticles helps localize procoagulant factors at sites of vascular injury, thereby triggering platelet activation. Aberrant SELPLG expression, genetic variations and even gene amplification have been linked to increased tumor cell adhesion, enhanced metastatic dissemination (including in multiple myeloma, non‐Hodgkin lymphoma, and solid tumors) and resistance to therapeutics. Proteolytic processing by enzymes such as BACE1 and bacterial proteases—as well as binding interactions with extracellular matrix components like versican—further modulate its adhesive and signaling functions, underscoring its multifaceted role in both inflammatory and neoplastic pathophysiology."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "33", "end_ref": "48"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Bryan T Marshall, Mian Long, James W Piper, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Direct observation of catch bonds involving cell-adhesion molecules."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature01605"}], "href": "https://doi.org/10.1038/nature01605"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12736689"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12736689"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Yoshihiro Kuwano, Oliver Spelten, Hong Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2010-01-266122"}], "href": "https://doi.org/10.1182/blood-2010-01-266122"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20445017"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20445017"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Eric Y H Park, McRae J Smith, Emily S Stropp, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes P-selectin bond clusters."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biophys J (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/S0006-3495(02)75534-3"}], "href": "https://doi.org/10.1016/S0006-3495(02"}, {"type": "t", "text": "75534-3) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11916843"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11916843"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Chad E Green, David N Pearson, Raymond T Camphausen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity beta2-integrin on neutrophils."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.172.12.7780"}], "href": "https://doi.org/10.4049/jimmunol.172.12.7780"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15187162"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15187162"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Karen R Snapp, Christine E Heitzig, Geoffrey S Kansas "}, {"type": "b", "children": [{"type": "t", "text": "Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood.v99.12.4494"}], "href": "https://doi.org/10.1182/blood.v99.12.4494"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12036880"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12036880"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Anne Leppänen, Tadayuki Yago, Vivianne I Otto, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M303551200"}], "href": "https://doi.org/10.1074/jbc.M303551200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12736247"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12736247"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Arkadiusz G Klopocki, Tadayuki Yago, Padmaja Mehta, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Replacing a lectin domain residue in L-selectin enhances binding to P-selectin glycoprotein ligand-1 but not to 6-sulfo-sialyl Lewis x."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M709785200"}], "href": "https://doi.org/10.1074/jbc.M709785200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18250165"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18250165"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Knut Schäkel, Reiji Kannagi, Bernhard Kniep, et al. "}, {"type": "b", "children": [{"type": "t", "text": "6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunity (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s1074-7613(02)00393-x"}], "href": "https://doi.org/10.1016/s1074-7613(02"}, {"type": "t", "text": "00393-x) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12354382"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12354382"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Ana Urzainqui, Juan M Serrador, Fernando Viedma, et al. "}, {"type": "b", "children": [{"type": "t", "text": "ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunity (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s1074-7613(02)00420-x"}], "href": "https://doi.org/10.1016/s1074-7613(02"}, {"type": "t", "text": "00420-x) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12387735"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12387735"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Luca Battistini, Laura Piccio, Barbara Rossi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2002-10-3309"}], "href": "https://doi.org/10.1182/blood-2002-10-3309"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12595306"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12595306"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "David M Koelle, Zhi Liu, Christopher M McClurkan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI15537"}], "href": "https://doi.org/10.1172/JCI15537"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12189248"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12189248"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Tilman Schneider-Hohendorf, Jan Rossaint, Hema Mohan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20140540"}], "href": "https://doi.org/10.1084/jem.20140540"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25135296"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25135296"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Robert C Fuhlbrigge, Sandra L King, Robert Sackstein, et al. "}, {"type": "b", "children": [{"type": "t", "text": "CD43 is a ligand for E-selectin on CLA+ human T cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2005-05-2112"}], "href": "https://doi.org/10.1182/blood-2005-05-2112"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16269612"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16269612"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Roberto Tinoco, Dennis C Otero, Amy A Takahashi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PSGL-1: A New Player in the Immune Checkpoint Landscape."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Trends Immunol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.it.2017.02.002"}], "href": "https://doi.org/10.1016/j.it.2017.02.002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28262471"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28262471"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Jérémie Rossy, Dominique Schlicht, Britta Engelhardt, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Flotillins interact with PSGL-1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0005403"}], "href": "https://doi.org/10.1371/journal.pone.0005403"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19404397"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19404397"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Joshua A Boyce, Elizabeth A Mellor, Brandy Perkins, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human mast cell progenitors use alpha4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood.v99.8.2890"}], "href": "https://doi.org/10.1182/blood.v99.8.2890"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11929779"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11929779"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "P da Costa Martins, N van den Berk, Laurien H Ulfman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arterioscler Thromb Vasc Biol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/01.ATV.0000106320.40933.E5"}], "href": "https://doi.org/10.1161/01.ATV.0000106320.40933.E5"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "14615387"}], "href": "https://pubmed.ncbi.nlm.nih.gov/14615387"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Paula da Costa Martins, Juan-Jesús García-Vallejo, Johannes V van Thienen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arterioscler Thromb Vasc Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/ATVBAHA.107.140442"}], "href": "https://doi.org/10.1161/ATVBAHA.107.140442"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17322099"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17322099"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Misato Hashizume, Yoshinobu Higuchi, Yasushi Uchiyama, et al. "}, {"type": "b", "children": [{"type": "t", "text": "IL-6 plays an essential role in neutrophilia under inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cytokine (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cyto.2011.01.007"}], "href": "https://doi.org/10.1016/j.cyto.2011.01.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21292497"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21292497"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Kei-ichi Yamanaka, Charles J Dimitroff, Robert C Fuhlbrigge, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Allergy Clin Immunol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.jaci.2007.08.014"}], "href": "https://doi.org/10.1016/j.jaci.2007.08.014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17910894"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17910894"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Alexander Zarbock, Klaus Ley, Rodger P McEver, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2011-07-343566"}], "href": "https://doi.org/10.1182/blood-2011-07-343566"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22021370"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22021370"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Rachael A Clark, Benjamin Chong, Nina Mirchandani, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The vast majority of CLA+ T cells are resident in normal skin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.176.7.4431"}], "href": "https://doi.org/10.4049/jimmunol.176.7.4431"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16547281"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16547281"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Fernando Ruiz-Perez, Rezwanul Wahid, Christina S Faherty, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1101006108"}], "href": "https://doi.org/10.1073/pnas.1101006108"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21768350"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21768350"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Kyoung-Seong Choi, Justin Garyu, Jinho Park, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Diminished adhesion of Anaplasma phagocytophilum-infected neutrophils to endothelial cells is associated with reduced expression of leukocyte surface selectin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Infect Immun (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/IAI.71.8.4586-4594.2003"}], "href": "https://doi.org/10.1128/IAI.71.8.4586-4594.2003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12874338"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12874338"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Wei Chen, Evan A Evans, Rodger P McEver, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Monitoring receptor-ligand interactions between surfaces by thermal fluctuations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biophys J (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1529/biophysj.107.117895"}], "href": "https://doi.org/10.1529/biophysj.107.117895"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17890399"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17890399"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Charles J Dimitroff, Ralph J Bernacki, Robert Sackstein "}, {"type": "b", "children": [{"type": "t", "text": "Glycosylation-dependent inhibition of cutaneous lymphocyte-associated antigen expression: implications in modulating lymphocyte migration to skin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2002-06-1736"}], "href": "https://doi.org/10.1182/blood-2002-06-1736"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12393521"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12393521"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Yorihiro Nishimura, Masayuki Shimojima, Yoshio Tano, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Med (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nm.1961"}], "href": "https://doi.org/10.1038/nm.1961"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19543284"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19543284"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Seiya Yamayoshi, Seii Ohka, Ken Fujii, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.02070-12"}], "href": "https://doi.org/10.1128/JVI.02070-12"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23302872"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23302872"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Yorihiro Nishimura, Hyunwook Lee, Susan Hafenstein, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Pathog (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.ppat.1003511"}], "href": "https://doi.org/10.1371/journal.ppat.1003511"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23935488"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23935488"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Yorihiro Nishimura, Takaji Wakita, Hiroyuki Shimizu "}, {"type": "b", "children": [{"type": "t", "text": "Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Pathog (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.ppat.1001174"}], "href": "https://doi.org/10.1371/journal.ppat.1001174"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21079683"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21079683"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Hsiang-Yin Lin, Ya-Ting Yang, Shu-Ling Yu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.00573-13"}], "href": "https://doi.org/10.1128/JVI.00573-13"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23760234"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23760234"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Ying Liu, Yajing Fu, Qian Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Proteomic profiling of HIV-1 infection of human CD4"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "+"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": " T cells identifies PSGL-1 as an HIV restriction factor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Microbiol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41564-019-0372-2"}], "href": "https://doi.org/10.1038/s41564-019-0372-2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30833724"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30833724"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Robert J Johnston, Linhui Julie Su, Jason Pinckney, et al. "}, {"type": "b", "children": [{"type": "t", "text": "VISTA is an acidic pH-selective ligand for PSGL-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41586-019-1674-5"}], "href": "https://doi.org/10.1038/s41586-019-1674-5"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31645726"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31645726"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Bruce Furie, Barbara C Furie "}, {"type": "b", "children": [{"type": "t", "text": "Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Trends Mol Med (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molmed.2004.02.008"}], "href": "https://doi.org/10.1016/j.molmed.2004.02.008"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15059608"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15059608"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Stefan F Lichtenthaler, Diana-Ines Dominguez, Gil G Westmeyer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M303861200"}], "href": "https://doi.org/10.1074/jbc.M303861200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "14507929"}], "href": "https://pubmed.ncbi.nlm.nih.gov/14507929"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Elzbieta Pluskota, Neil M Woody, Dorota Szpak, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2007-12-127183"}], "href": "https://doi.org/10.1182/blood-2007-12-127183"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18509085"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18509085"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Guangyu An, Huan Wang, Rong Tang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circulation (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCULATIONAHA.108.771048"}], "href": "https://doi.org/10.1161/CIRCULATIONAHA.108.771048"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18519846"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18519846"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Philippe Foubert, Jean-Sébastien Silvestre, Boussad Souttou, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI28338"}], "href": "https://doi.org/10.1172/JCI28338"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17510705"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17510705"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Yan-Qing Ma, Edward F Plow, Jian-Guo Geng "}, {"type": "b", "children": [{"type": "t", "text": "P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2004-03-1108"}], "href": "https://doi.org/10.1182/blood-2004-03-1108"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15217824"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15217824"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Abdel Kareem Azab, Phong Quang, Feda Azab, et al. "}, {"type": "b", "children": [{"type": "t", "text": "P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2011-07-368050"}], "href": "https://doi.org/10.1182/blood-2011-07-368050"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22096244"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22096244"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "James R Cerhan, Stephen M Ansell, Zachary S Fredericksen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2007-05-088682"}], "href": "https://doi.org/10.1182/blood-2007-05-088682"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17827388"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17827388"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Peng-Sheng Zheng, Dana Vais, David Lapierre, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.01516"}], "href": "https://doi.org/10.1242/jcs.01516"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15522894"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15522894"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "János Kappelmayer, Béla Nagy "}, {"type": "b", "children": [{"type": "t", "text": "The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biomed Res Int (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1155/2017/6138145"}], "href": "https://doi.org/10.1155/2017/6138145"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28680883"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28680883"}]}, {"type": "r", "ref": 44, "children": [{"type": "t", "text": "Emile M Rijcken, Mike G Laukoetter, Christoph Anthoni, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Immunoblockade of PSGL-1 attenuates established experimental murine colitis by reduction of leukocyte rolling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Gastrointest Liver Physiol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajpgi.00207.2003"}], "href": "https://doi.org/10.1152/ajpgi.00207.2003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15001428"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15001428"}]}, {"type": "r", "ref": 45, "children": [{"type": "t", "text": "Shi-Lu Luan, Emmanuelle Boulanger, Hongtao Ye, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Primary effusion lymphoma: genomic profiling revealed amplification of SELPLG and CORO1C encoding for proteins important for cell migration."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Pathol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/path.2752"}], "href": "https://doi.org/10.1002/path.2752"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20690162"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20690162"}]}, {"type": "r", "ref": 46, "children": [{"type": "t", "text": "Katrin Stübke, Daniel Wicklein, Lena Herich, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Lett (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.canlet.2012.02.019"}], "href": "https://doi.org/10.1016/j.canlet.2012.02.019"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22366582"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22366582"}]}, {"type": "r", "ref": 47, "children": [{"type": "t", "text": "Stylianos Bournazos, Jillian Rennie, Simon P Hart, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arterioscler Thromb Vasc Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/ATVBAHA.108.167601"}], "href": "https://doi.org/10.1161/ATVBAHA.108.167601"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18497306"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18497306"}]}, {"type": "r", "ref": 48, "children": [{"type": "t", "text": "Anika Stadtmann, Giulia Germena, Helena Block, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The PSGL-1-L-selectin signaling complex regulates neutrophil adhesion under flow."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20130664"}], "href": "https://doi.org/10.1084/jem.20130664"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24127491"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24127491"}]}]}]}
|
Synonyms | CLA, PSGL1, PSGL-1, CD162 |
Proteins | SELPL_HUMAN |
NCBI Gene ID | 6404 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
SELPLG has 6,800 functional associations with biological entities spanning 8 categories (molecular profile, organism, chemical, functional term, phrase or reference, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 116 datasets.
Click the + buttons to view associations for SELPLG from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of SELPLG gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of SELPLG gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of SELPLG gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of SELPLG gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of SELPLG gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of SELPLG gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with SELPLG gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of SELPLG gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of SELPLG gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of SELPLG gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of SELPLG gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing SELPLG protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing SELPLG protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores | cellular components co-occuring with SELPLG protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with SELPLG protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of SELPLG gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with SELPLG gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with SELPLG gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with SELPLG gene/protein from the curated CTD Gene-Disease Associations dataset. | |
dbGAP Gene-Trait Associations | traits associated with SELPLG gene in GWAS and other genetic association datasets from the dbGAP Gene-Trait Associations dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by SELPLG gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores | diseases associated with SELPLG gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 | diseases associated with SELPLG gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores | diseases co-occuring with SELPLG gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with SELPLG gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with SELPLG gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
DisGeNET Gene-Phenotype Associations | phenotypes associated with SELPLG gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at SELPLG gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of SELPLG gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of SELPLG gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing SELPLG from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GAD Gene-Disease Associations | diseases associated with SELPLG gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset. | |
GAD High Level Gene-Disease Associations | diseases associated with SELPLG gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset. | |
GDSC Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset. | |
GeneRIF Biological Term Annotations | biological terms co-occuring with SELPLG gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing SELPLG from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of SELPLG gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GlyGen Glycosylated Proteins | ligands (chemical) binding SELPLG protein from the GlyGen Glycosylated Proteins dataset. | |
GO Biological Process Annotations 2015 | biological processes involving SELPLG gene from the curated GO Biological Process Annotations 2015 dataset. | |
GO Biological Process Annotations 2023 | biological processes involving SELPLG gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving SELPLG gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing SELPLG protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing SELPLG protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing SELPLG protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GO Molecular Function Annotations 2015 | molecular functions performed by SELPLG gene from the curated GO Molecular Function Annotations 2015 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of SELPLG gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of SELPLG gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
GWAS Catalog SNP-Phenotype Associations | phenotypes associated with SELPLG gene in GWAS datasets from the GWAS Catalog SNP-Phenotype Associations dataset. | |
GWASdb SNP-Disease Associations | diseases associated with SELPLG gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset. | |
GWASdb SNP-Phenotype Associations | phenotypes associated with SELPLG gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset. | |
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset. | |
HMDB Metabolites of Enzymes | interacting metabolites for SELPLG protein from the curated HMDB Metabolites of Enzymes dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of SELPLG gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of SELPLG protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
Hub Proteins Protein-Protein Interactions | interacting hub proteins for SELPLG from the curated Hub Proteins Protein-Protein Interactions dataset. | |
HuBMAP ASCT+B Augmented with RNA-seq Coexpression | cell types associated with SELPLG gene from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset. | |
HuBMAP Azimuth Cell Type Annotations | cell types associated with SELPLG gene from the HuBMAP Azimuth Cell Type Annotations dataset. | |
HuGE Navigator Gene-Phenotype Associations | phenotypes associated with SELPLG gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for SELPLG protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of SELPLG gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
KEGG Pathways | pathways involving SELPLG protein from the KEGG Pathways dataset. | |
Kinase Library Serine Threonine Kinome Atlas | kinases that phosphorylate SELPLG protein from the Kinase Library Serine Threonine Atlas dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of SELPLG gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of SELPLG gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with SELPLG gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
KnockTF Gene Expression Profiles with Transcription Factor Perturbations | transcription factor perturbations changing expression of SELPLG gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of SELPLG gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures | gene perturbations changing expression of SELPLG gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset. | |
LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of SELPLG gene from the LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
LOCATE Curated Protein Localization Annotations | cellular components containing SELPLG protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain SELPLG protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by SELPLG gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
MiRTarBase microRNA Targets | microRNAs targeting SELPLG gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of SELPLG gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
MPO Gene-Phenotype Associations | phenotypes of transgenic mice caused by SELPLG gene mutations from the MPO Gene-Phenotype Associations dataset. | |
MSigDB Cancer Gene Co-expression Modules | co-expressed genes for SELPLG from the MSigDB Cancer Gene Co-expression Modules dataset. | |
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations | gene perturbations changing expression of SELPLG gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of SELPLG gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
Pathway Commons Protein-Protein Interactions | interacting proteins for SELPLG from the Pathway Commons Protein-Protein Interactions dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of SELPLG gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of SELPLG gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PFOCR Pathway Figure Associations 2023 | pathways involving SELPLG protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
PFOCR Pathway Figure Associations 2024 | pathways involving SELPLG protein from the Wikipathways PFOCR 2024 dataset. | |
PID Pathways | pathways involving SELPLG protein from the PID Pathways dataset. | |
Reactome Pathways 2014 | pathways involving SELPLG protein from the Reactome Pathways dataset. | |
Reactome Pathways 2024 | pathways involving SELPLG protein from the Reactome Pathways 2024 dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of SELPLG gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at SELPLG gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of SELPLG gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of SELPLG gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Sanger Dependency Map Cancer Cell Line Proteomics | cell lines associated with SELPLG protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of SELPLG gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of SELPLG gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of SELPLG gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of SELPLG gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of SELPLG protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of SELPLG protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores | tissues with high expression of SELPLG protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of SELPLG protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores | tissues co-occuring with SELPLG protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with SELPLG protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |
WikiPathways Pathways 2024 | pathways involving SELPLG protein from the WikiPathways Pathways 2024 dataset. | |