TAS1R3 Gene

HGNC Family G protein-coupled receptors
Name taste receptor, type 1, member 3
Description The protein encoded by this gene is a G-protein coupled receptor involved in taste responses. The encoded protein can form a heterodimeric receptor with TAS1R1 to elicit the umami taste response, or it can bind with TAS1R2 to form a receptor for the sweet taste response. [provided by RefSeq, Nov 2015]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nTAS1R3 is a central component of mammalian taste reception, where it partners with either TAS1R2 to form the canonical sweet taste receptor or with TAS1R1 to detect umami‐tasting L‐amino acids. In gustatory cells, TAS1R3 contributes to a receptor complex that is broadly tuned for a variety of ligands—from natural sugars and artificial sweeteners to sweet proteins and amino acids—by employing multiple ligand–binding sites located in both its large extracellular Venus flytrap domain and its transmembrane region. Structure–function studies using mutagenesis, heterologous expression, and molecular dynamics simulations have identified key residues in the extracellular and transmembrane domains that determine ligand selectivity, allosteric modulation (for example by inhibitors such as lactisole and cyclamate), and species‐dependent sensitivity. Genetic variants upstream of TAS1R3 that affect promoter activity further contribute to the marked interindividual differences in sweet perception."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "17"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its well‐defined role in oral chemosensation, TAS1R3 is also expressed in several extra‐oral tissues where it appears to modulate diverse physiological processes. For example, TAS1R3–containing receptors in the gastrointestinal tract contribute to the regulation of nutrient‐dependent hormone secretion, influencing the release of incretin and satiation peptides. Expression in non‐gustatory tissues—including in the liver, pancreas, adipocytes, and even in sperm and retinal and immune cells—suggests an additional role in monitoring luminal chemical composition, mediating cellular metabolism and barrier functions, and possibly modulating inflammatory responses. Such extra‐oral functions indicate that TAS1R3 serves as an integrative sensor linking nutritional cues to systemic metabolic and cellular signaling pathways."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "18", "end_ref": "26"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nRecent molecular and genetic studies have further refined our understanding of TAS1R3’s regulatory mechanisms and structure. Advanced techniques—including high-resolution structural modeling, saturation transfer difference NMR spectroscopy, and comprehensive site-directed mutagenesis—have delineated the specific contributions of TAS1R3’s extracellular, cysteine-rich, and transmembrane domains in ligand binding, receptor activation, and intracellular signaling. In parallel, genetic association studies and single nucleotide polymorphism analyses have linked variations in TAS1R3 (and in its partner subunits) with altered taste perception, dietary habits, and even broader phenotypic outcomes such as dental caries and metabolic traits. Moreover, investigations into membrane trafficking have revealed that proper surface expression and dimerization of TAS1R3 are crucial for functional receptor assembly. Together, these studies offer an atomistic framework that not only explains TAS1R3’s pivotal role in chemosensory perception but also its emerging functions in systemic physiology."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "27", "end_ref": "41"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Greg Nelson, Jayaram Chandrashekar, Mark A Hoon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "An amino-acid taste receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature726"}], "href": "https://doi.org/10.1038/nature726"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11894099"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11894099"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Peihua Jiang, Qingzhou Ji, Zhan Liu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The cysteine-rich region of T1R3 determines responses to intensely sweet proteins."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M406779200"}], "href": "https://doi.org/10.1074/jbc.M406779200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15299024"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15299024"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Hong Xu, Lena Staszewski, Huixian Tang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Different functional roles of T1R subunits in the heteromeric taste receptors."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0404384101"}], "href": "https://doi.org/10.1073/pnas.0404384101"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15353592"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15353592"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Peihua Jiang, Meng Cui, Baohua Zhao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M414287200"}], "href": "https://doi.org/10.1074/jbc.M414287200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15668251"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15668251"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Veronica Galindo-Cuspinera, Marcel Winnig, Bernd Bufe, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A TAS1R receptor-based explanation of sweet 'water-taste'."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature04765"}], "href": "https://doi.org/10.1038/nature04765"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16633339"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16633339"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Ayako Koizumi, Ken-ichiro Nakajima, Tomiko Asakura, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2007.04.171"}], "href": "https://doi.org/10.1016/j.bbrc.2007.04.171"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17499612"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17499612"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Marcel Winnig, Bernd Bufe, Nicole A Kratochwil, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Struct Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1472-6807-7-66"}], "href": "https://doi.org/10.1186/1472-6807-7-66"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17935609"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17935609"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "S Vigues, C D Dotson, S D Munger "}, {"type": "b", "children": [{"type": "t", "text": "The receptor basis of sweet taste in mammals."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Results Probl Cell Differ (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/400_2008_2"}], "href": "https://doi.org/10.1007/400_2008_2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19083128"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19083128"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Alexey A Fushan, Christopher T Simons, Jay P Slack, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Curr Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cub.2009.06.015"}], "href": "https://doi.org/10.1016/j.cub.2009.06.015"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19559618"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19559618"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Mariam Raliou, Anna Wiencis, Anne-Marie Pillias, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Clin Nutr (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3945/ajcn.2009.27462P"}], "href": "https://doi.org/10.3945/ajcn.2009.27462P"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19571223"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19571223"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Qing-Ying Chen, Suzanne Alarcon, Anilet Tharp, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Clin Nutr (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3945/ajcn.2009.27462N"}], "href": "https://doi.org/10.3945/ajcn.2009.27462N"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19587085"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19587085"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Fariba M Assadi-Porter, Emeline L Maillet, James T Radek, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Mol Biol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.jmb.2010.03.017"}], "href": "https://doi.org/10.1016/j.jmb.2010.03.017"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20302879"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20302879"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Mariam Raliou, Marta Grauso, Brice Hoffmann, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Chem Senses (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/chemse/bjr014"}], "href": "https://doi.org/10.1093/chemse/bjr014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21422378"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21422378"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Yasuka Toda, Tomoya Nakagita, Takashi Hayakawa, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.494443"}], "href": "https://doi.org/10.1074/jbc.M113.494443"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24214976"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24214976"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Tomoya Nakagita, Akiko Ishida, Takumi Matsuya, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural insights into the differences among lactisole derivatives in inhibitory mechanisms against the human sweet taste receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0213552"}], "href": "https://doi.org/10.1371/journal.pone.0213552"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30883570"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30883570"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Jean-Baptiste Chéron, Amanda Soohoo, Yi Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Conserved Residues Control the T1R3-Specific Allosteric Signaling Pathway of the Mammalian Sweet-Taste Receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Chem Senses (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/chemse/bjz015"}], "href": "https://doi.org/10.1093/chemse/bjz015"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30893427"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30893427"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Keisuke Sanematsu, Masato Yamamoto, Yuki Nagasato, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Prediction of dynamic allostery for the transmembrane domain of the sweet taste receptor subunit, TAS1R3."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Commun Biol (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s42003-023-04705-5"}], "href": "https://doi.org/10.1038/s42003-023-04705-5"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37012338"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37012338"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Kazumi Taniguchi "}, {"type": "b", "children": [{"type": "t", "text": "Expression of the sweet receptor protein, T1R3, in the human liver and pancreas."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Vet Med Sci (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1292/jvms.66.1311"}], "href": "https://doi.org/10.1292/jvms.66.1311"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15585941"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15585941"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Takashi Toyono, Yuji Seta, Shinji Kataoka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "CCAAT/Enhancer-binding protein beta regulates expression of human T1R3 taste receptor gene in the bile duct carcinoma cell line, HuCCT1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbaexp.2007.08.003"}], "href": "https://doi.org/10.1016/j.bbaexp.2007.08.003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17928076"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17928076"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Makoto Ohmoto, Ichiro Matsumoto, Akihito Yasuoka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Neurosci (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.mcn.2008.04.011"}], "href": "https://doi.org/10.1016/j.mcn.2008.04.011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18539481"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18539481"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "A C Gerspach, R E Steinert, L Schönenberger, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Endocrinol Metab (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajpendo.00077.2011"}], "href": "https://doi.org/10.1152/ajpendo.00077.2011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21540445"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21540445"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Dorke Meyer, Anja Voigt, Patricia Widmayer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Expression of Tas1 taste receptors in mammalian spermatozoa: functional role of Tas1r1 in regulating basal Ca²⁺ and cAMP concentrations in spermatozoa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0032354"}], "href": "https://doi.org/10.1371/journal.pone.0032354"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22427794"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22427794"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Michael G Tordoff, Laura K Alarcón, Sitaram Valmeki, et al. "}, {"type": "b", "children": [{"type": "t", "text": "T1R3: a human calcium taste receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/srep00496"}], "href": "https://doi.org/10.1038/srep00496"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22773945"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22773945"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Becky R Simon, Sebastian D Parlee, Brian S Learman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.514034"}], "href": "https://doi.org/10.1074/jbc.M113.514034"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24068707"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24068707"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Polina Lizunkova, Emmanuella Enuwosa, Havovi Chichger "}, {"type": "b", "children": [{"type": "t", "text": "Activation of the sweet taste receptor T1R3 by sucralose attenuates VEGF-induced vasculogenesis in a cell model of the retinal microvascular endothelium."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Graefes Arch Clin Exp Ophthalmol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00417-018-4157-8"}], "href": "https://doi.org/10.1007/s00417-018-4157-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30353220"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30353220"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Lena Ball, Julia Bauer, Dietmar Krautwurst "}, {"type": "b", "children": [{"type": "t", "text": "Heterodimerization of Chemoreceptors TAS1R3 and mGlu"}, {"type": "a", "children": [{"type": "t", "text": "sub"}], "href": "sub"}, {"type": "t", "text": "2"}, {"type": "a", "children": [{"type": "t", "text": "/sub"}], "href": "/sub"}, {"type": "t", "text": " in Human Blood Leukocytes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Mol Sci (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/ijms241612942"}], "href": "https://doi.org/10.3390/ijms241612942"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37629122"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37629122"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Roberta Spadaccini, Franca Trabucco, Gabriella Saviano, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Mol Biol (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0022-2836(03)00346-2"}], "href": "https://doi.org/10.1016/s0022-2836(03"}, {"type": "t", "text": "00346-2) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12706725"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12706725"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Mariam Raliou, Yves Boucher, Anna Wiencis, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tas1R1-Tas1R3 taste receptor variants in human fungiform papillae."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neurosci Lett (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.neulet.2008.12.060"}], "href": "https://doi.org/10.1016/j.neulet.2008.12.060"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19146926"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19146926"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Fariba M Assadi-Porter, Marco Tonelli, Emeline L Maillet, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbamem.2009.07.021"}], "href": "https://doi.org/10.1016/j.bbamem.2009.07.021"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19664591"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19664591"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Elodie Maîtrepierre, Maud Sigoillot, Laurence Le Pessot, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Protein Expr Purif (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.pep.2012.03.006"}], "href": "https://doi.org/10.1016/j.pep.2012.03.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22450161"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22450161"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Eda Haznedaroğlu, Meliha Koldemir-Gündüz, Nur Bakır-Coşkun, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Association of sweet taste receptor gene polymorphisms with dental caries experience in school children."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Caries Res (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1159/000381426"}], "href": "https://doi.org/10.1159/000381426"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25924601"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25924601"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Rie Tsutsumi, Masakazu Goda, Chisa Fujimoto, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Effects of chemotherapy on gene expression of lingual taste receptors in patients with head and neck cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Laryngoscope (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/lary.25679"}], "href": "https://doi.org/10.1002/lary.25679"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26422579"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26422579"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Jean-Baptiste Chéron, Jérôme Golebiowski, Serge Antonczak, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The anatomy of mammalian sweet taste receptors."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proteins (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/prot.25228"}], "href": "https://doi.org/10.1002/prot.25228"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27936499"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27936499"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Pengfei Han, Russell S J Keast, Eugeni Roura "}, {"type": "b", "children": [{"type": "t", "text": "Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Br J Nutr (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1017/S0007114517002872"}], "href": "https://doi.org/10.1017/S0007114517002872"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29110749"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29110749"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Pengfei Han, Russell Keast, Eugeni Roura "}, {"type": "b", "children": [{"type": "t", "text": "TAS1R1 and TAS1R3 Polymorphisms Relate to Energy and Protein-Rich Food Choices from a Buffet Meal Respectively."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nutrients (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/nu10121906"}], "href": "https://doi.org/10.3390/nu10121906"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30518043"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30518043"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Jihye Park, Balaji Selvam, Keisuke Sanematsu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural architecture of a dimeric class C GPCR based on co-trafficking of sweet taste receptor subunits."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.RA118.006173"}], "href": "https://doi.org/10.1074/jbc.RA118.006173"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30723160"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30723160"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Jose Manuel Perez-Aguilar, Seung-Gu Kang, Leili Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Modeling and Structural Characterization of the Sweet Taste Receptor Heterodimer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "ACS Chem Neurosci (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1021/acschemneuro.9b00438"}], "href": "https://doi.org/10.1021/acschemneuro.9b00438"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31553164"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31553164"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Panupong Mahalapbutr, Vannajan Sanghiran Lee, Thanyada Rungrotmongkol "}, {"type": "b", "children": [{"type": "t", "text": "Binding Hotspot and Activation Mechanism of Maltitol and Lactitol toward the Human Sweet Taste Receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Agric Food Chem (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1021/acs.jafc.0c02580"}], "href": "https://doi.org/10.1021/acs.jafc.0c02580"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32551626"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32551626"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Aparna Shil, Oluwatobi Olusanya, Zaynub Ghufoor, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Artificial Sweeteners Disrupt Tight Junctions and Barrier Function in the Intestinal Epithelium through Activation of the Sweet Taste Receptor, T1R3."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nutrients (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/nu12061862"}], "href": "https://doi.org/10.3390/nu12061862"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32580504"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32580504"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Liu Yang, Meng Cui, Bo Liu "}, {"type": "b", "children": [{"type": "t", "text": "Current Progress in Understanding the Structure and Function of Sweet Taste Receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Mol Neurosci (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s12031-020-01642-4"}], "href": "https://doi.org/10.1007/s12031-020-01642-4"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32607758"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32607758"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Monia Cecati, Arianna Vignini, Francesca Borroni, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TAS1R3 and TAS2R38 Polymorphisms Affect Sweet Taste Perception: An Observational Study on Healthy and Obese Subjects."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nutrients (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/nu14091711"}], "href": "https://doi.org/10.3390/nu14091711"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35565677"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35565677"}]}]}]}
Synonyms T1R3
Proteins TS1R3_HUMAN
NCBI Gene ID 83756
API
Download Associations
Predicted Functions View TAS1R3's ARCHS4 Predicted Functions.
Co-expressed Genes View TAS1R3's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View TAS1R3's ARCHS4 Predicted Functions.

Functional Associations

TAS1R3 has 3,302 functional associations with biological entities spanning 9 categories (molecular profile, organism, functional term, phrase or reference, chemical, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 83 datasets.

Click the + buttons to view associations for TAS1R3 from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles tissues with high or low expression of TAS1R3 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq tissue samples with high or low expression of TAS1R3 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset.
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of TAS1R3 gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset.
CCLE Cell Line Gene CNV Profiles cell lines with high or low copy number of TAS1R3 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset.
CellMarker Gene-Cell Type Associations cell types associated with TAS1R3 gene from the CellMarker Gene-Cell Type Associations dataset.
ChEA Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of TAS1R3 gene from the CHEA Transcription Factor Binding Site Profiles dataset.
ChEA Transcription Factor Targets transcription factors binding the promoter of TAS1R3 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of TAS1R3 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores cellular components containing TAS1R3 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 cellular components containing TAS1R3 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores cellular components co-occuring with TAS1R3 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 cellular components co-occuring with TAS1R3 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.
COSMIC Cell Line Gene CNV Profiles cell lines with high or low copy number of TAS1R3 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset.
COSMIC Cell Line Gene Mutation Profiles cell lines with TAS1R3 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset.
CTD Gene-Chemical Interactions chemicals interacting with TAS1R3 gene/protein from the curated CTD Gene-Chemical Interactions dataset.
CTD Gene-Disease Associations diseases associated with TAS1R3 gene/protein from the curated CTD Gene-Disease Associations dataset.
DepMap CRISPR Gene Dependency cell lines with fitness changed by TAS1R3 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset.
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 diseases associated with TAS1R3 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores diseases co-occuring with TAS1R3 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with TAS1R3 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with TAS1R3 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with TAS1R3 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
ENCODE Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at TAS1R3 gene from the ENCODE Histone Modification Site Profiles dataset.
ENCODE Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of TAS1R3 gene from the ENCODE Transcription Factor Binding Site Profiles dataset.
ENCODE Transcription Factor Targets transcription factors binding the promoter of TAS1R3 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset.
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells PubMedIDs of publications reporting gene signatures containing TAS1R3 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset.
GAD Gene-Disease Associations diseases associated with TAS1R3 gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.
GeneRIF Biological Term Annotations biological terms co-occuring with TAS1R3 gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.
GEO Signatures of Differentially Expressed Genes for Diseases disease perturbations changing expression of TAS1R3 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset.
GEO Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of TAS1R3 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations kinase perturbations changing expression of TAS1R3 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of TAS1R3 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset.
GEO Signatures of Differentially Expressed Genes for Viral Infections virus perturbations changing expression of TAS1R3 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset.
GO Biological Process Annotations 2015 biological processes involving TAS1R3 gene from the curated GO Biological Process Annotations 2015 dataset.
GO Biological Process Annotations 2023 biological processes involving TAS1R3 gene from the curated GO Biological Process Annotations 2023 dataset.
GO Biological Process Annotations 2025 biological processes involving TAS1R3 gene from the curated GO Biological Process Annotations2025 dataset.
GO Cellular Component Annotations 2015 cellular components containing TAS1R3 protein from the curated GO Cellular Component Annotations 2015 dataset.
GO Cellular Component Annotations 2023 cellular components containing TAS1R3 protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Cellular Component Annotations 2025 cellular components containing TAS1R3 protein from the curated GO Cellular Component Annotations 2025 dataset.
GO Molecular Function Annotations 2015 molecular functions performed by TAS1R3 gene from the curated GO Molecular Function Annotations 2015 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by TAS1R3 gene from the curated GO Molecular Function Annotations 2023 dataset.
GO Molecular Function Annotations 2025 molecular functions performed by TAS1R3 gene from the curated GO Molecular Function Annotations 2025 dataset.
GTEx eQTL 2025 SNPs regulating expression of TAS1R3 gene from the GTEx eQTL 2025 dataset.
GTEx Tissue Gene Expression Profiles tissues with high or low expression of TAS1R3 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of TAS1R3 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GTEx Tissue Sample Gene Expression Profiles tissue samples with high or low expression of TAS1R3 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset.
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles cell lines with high or low expression of TAS1R3 gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset.
HMDB Metabolites of Enzymes interacting metabolites for TAS1R3 protein from the curated HMDB Metabolites of Enzymes dataset.
HPA Cell Line Gene Expression Profiles cell lines with high or low expression of TAS1R3 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset.
HPA Tissue Gene Expression Profiles tissues with high or low expression of TAS1R3 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset.
HPA Tissue Protein Expression Profiles tissues with high or low expression of TAS1R3 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset.
HPA Tissue Sample Gene Expression Profiles tissue samples with high or low expression of TAS1R3 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset.
HuBMAP Azimuth Cell Type Annotations cell types associated with TAS1R3 gene from the HuBMAP Azimuth Cell Type Annotations dataset.
HuGE Navigator Gene-Phenotype Associations phenotypes associated with TAS1R3 gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset.
InterPro Predicted Protein Domain Annotations protein domains predicted for TAS1R3 protein from the InterPro Predicted Protein Domain Annotations dataset.
JASPAR Predicted Transcription Factor Targets transcription factors regulating expression of TAS1R3 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset.
KEGG Pathways pathways involving TAS1R3 protein from the KEGG Pathways dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles cell lines with high or low copy number of TAS1R3 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles cell lines with high or low expression of TAS1R3 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles cell lines with TAS1R3 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset.
LOCATE Predicted Protein Localization Annotations cellular components predicted to contain TAS1R3 protein from the LOCATE Predicted Protein Localization Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by TAS1R3 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MotifMap Predicted Transcription Factor Targets transcription factors regulating expression of TAS1R3 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset.
MPO Gene-Phenotype Associations phenotypes of transgenic mice caused by TAS1R3 gene mutations from the MPO Gene-Phenotype Associations dataset.
Pathway Commons Protein-Protein Interactions interacting proteins for TAS1R3 from the Pathway Commons Protein-Protein Interactions dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of TAS1R3 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations gene perturbations changing expression of TAS1R3 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PFOCR Pathway Figure Associations 2023 pathways involving TAS1R3 protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving TAS1R3 protein from the Wikipathways PFOCR 2024 dataset.
Reactome Pathways 2014 pathways involving TAS1R3 protein from the Reactome Pathways dataset.
Reactome Pathways 2024 pathways involving TAS1R3 protein from the Reactome Pathways 2024 dataset.
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles cell types and tissues with high or low DNA methylation of TAS1R3 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset.
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles cell types and tissues with high or low expression of TAS1R3 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset.
Roadmap Epigenomics Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at TAS1R3 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of TAS1R3 gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of TAS1R3 gene from the RummaGEO Gene Perturbation Signatures dataset.
Tabula Sapiens Gene-Cell Associations cell types with high or low expression of TAS1R3 gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.
TCGA Signatures of Differentially Expressed Genes for Tumors tissue samples with high or low expression of TAS1R3 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores tissues with high expression of TAS1R3 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores tissues co-occuring with TAS1R3 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 tissues co-occuring with TAS1R3 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.
WikiPathways Pathways 2014 pathways involving TAS1R3 protein from the Wikipathways Pathways 2014 dataset.
WikiPathways Pathways 2024 pathways involving TAS1R3 protein from the WikiPathways Pathways 2024 dataset.