Name

NURSA Protein Complexes Dataset

From Nuclear Receptor Signaling Atlas

Proteins identified in complexes isolated from cultured cells

NURSA Protein-Protein Interactions Dataset

From Nuclear Receptor Signaling Atlas

Protein-protein interactions inferred from membership in complexes

NR3C1 Gene

nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)

This gene encodes glucocorticoid receptor, which can function both as a transcription factor that binds to glucocorticoid response elements in the promoters of glucocorticoid responsive genes to activate their transcription, and as a regulator of other transcription factors. This receptor is typically found in the cytoplasm, but upon ligand binding, is transported into the nucleus. It is involved in inflammatory responses, cellular proliferation, and differentiation in target tissues. Mutations in this gene are associated with generalized glucocorticoid resistance. Alternative splicing of this gene results in transcript variants encoding either the same or different isoforms. Additional isoforms resulting from the use of alternate in-frame translation initiation sites have also been described, and shown to be functional, displaying diverse cytoplasm-to-nucleus trafficking patterns and distinct transcriptional activities (PMID:15866175). [provided by RefSeq, Feb 2011]

GCCD2 Gene

Glucocorticoid deficiency 2

GCCD3 Gene

glucocorticoid deficiency 3

SGK2 Gene

serum/glucocorticoid regulated kinase 2

This gene encodes a serine/threonine protein kinase. Although this gene product is similar to serum- and glucocorticoid-induced protein kinase (SGK), this gene is not induced by serum or glucocorticoids. This gene is induced in response to signals that activate phosphatidylinositol 3-kinase, which is also true for SGK. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2010]

SGK3 Gene

serum/glucocorticoid regulated kinase family, member 3

This gene is a member of the Ser/Thr protein kinase family and encodes a phosphoprotein with a PX (phox homology) domain. The protein phosphorylates several target proteins and has a role in neutral amino acid transport and activation of potassium and chloride channels. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

GLCCI1 Gene

glucocorticoid induced 1

This gene encodes a protein of unknown function. Expression of this gene is induced by glucocorticoids and may be an early marker for glucocorticoid-induced apoptosis. Single nucleotide polymorphisms in this gene are associated with a decreased response to inhaled glucocorticoids in asthmatic patients. [provided by RefSeq, Feb 2012]

GMEB2 Gene

glucocorticoid modulatory element binding protein 2

This gene is a member of KDWK gene family. The product of this gene associates with GMEB1 protein, and the complex is essential for parvovirus DNA replication. Study of rat homolog implicates the role of this gene in modulation of transactivation by the glucocorticoid receptor bound to glucocorticoid response elements. This gene appears to use multiple polyadenylation sites. [provided by RefSeq, Jul 2008]

GMEB1 Gene

glucocorticoid modulatory element binding protein 1

This gene encodes a member of KDWK gene family which associates with GMEB2 protein. The GMEB1-GMEB2 complex is essential for parvovirus DNA replication. Studies in rat for a similar gene suggest that this gene's role is to modulate the transactivation of the glucocorticoid receptor when it is bound to glucocorticoid response elements. Two alternative spliced transcript variants encoding different isoforms exist. [provided by RefSeq, Feb 2011]

SGK1 Gene

serum/glucocorticoid regulated kinase 1

This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion. High levels of expression of this gene may contribute to conditions such as hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]

MYOC Gene

myocilin, trabecular meshwork inducible glucocorticoid response

MYOC encodes the protein myocilin, which is believed to have a role in cytoskeletal function. MYOC is expressed in many occular tissues, including the trabecular meshwork, and was revealed to be the trabecular meshwork glucocorticoid-inducible response protein (TIGR). The trabecular meshwork is a specialized eye tissue essential in regulating intraocular pressure, and mutations in MYOC have been identified as the cause of hereditary juvenile-onset open-angle glaucoma. [provided by RefSeq, Jul 2008]

NSRP1 Gene

nuclear speckle splicing regulatory protein 1

CKS1B Gene

CDC28 protein kinase regulatory subunit 1B

CKS1B protein binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. The CKS1B mRNA is found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects a specialized role for the encoded protein. At least two transcript variants have been identified for this gene, and it appears that only one of them encodes a protein. [provided by RefSeq, Sep 2008]

CRTAM Gene

cytotoxic and regulatory T cell molecule

The CRTAM gene is upregulated in CD4 (see MIM 186940)-positive and CD8 (see CD8A; MIM 186910)-positive T cells and encodes a type I transmembrane protein with V and C1-like Ig domains (Yeh et al., 2008 [PubMed 18329370]).[supplied by OMIM, Feb 2009]

PRKAR2A Gene

protein kinase, cAMP-dependent, regulatory, type II, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER). [provided by RefSeq, Jul 2008]

PRKAR2B Gene

protein kinase, cAMP-dependent, regulatory, type II, beta

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. This subunit has been shown to interact with and suppress the transcriptional activity of the cAMP responsive element binding protein 1 (CREB1) in activated T cells. Knockout studies in mice suggest that this subunit may play an important role in regulating energy balance and adiposity. The studies also suggest that this subunit may mediate the gene induction and cataleptic behavior induced by haloperidol. [provided by RefSeq, Jul 2008]

PPP1R1AP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 2

RIIAD1 Gene

regulatory subunit of type II PKA R-subunit (RIIa) domain containing 1

DRC7 Gene

dynein regulatory complex subunit 7

DRC1 Gene

dynein regulatory complex subunit 1

PPP1R26 Gene

protein phosphatase 1, regulatory subunit 26

PPP1R27 Gene

protein phosphatase 1, regulatory subunit 27

PPP1R21 Gene

protein phosphatase 1, regulatory subunit 21

LOC100421250 Gene

epithelial splicing regulatory protein 1 pseudogene

PPP1R13B Gene

protein phosphatase 1, regulatory subunit 13B

This gene encodes a member of the ASPP (apoptosis-stimulating protein of p53) family of p53 interacting proteins. The protein contains four ankyrin repeats and an SH3 domain involved in protein-protein interactions. ASPP proteins are required for the induction of apoptosis by p53-family proteins. They promote DNA binding and transactivation of p53-family proteins on the promoters of proapoptotic genes. Expression of this gene is regulated by the E2F transcription factor. [provided by RefSeq, Jul 2008]

PPP1R13L Gene

protein phosphatase 1, regulatory subunit 13 like

IASPP is one of the most evolutionarily conserved inhibitors of p53 (TP53; MIM 191170), whereas ASPP1 (MIM 606455) and ASPP2 (MIM 602143) are activators of p53.[supplied by OMIM, Mar 2008]

LOC100631380 Gene

protein phosphatase 6, regulatory subunit 2 pseudogene 1

KCNMB3P1 Gene

potassium channel subfamily M regulatory beta subunit 3 pseudogene 1

LOC100421419 Gene

protein phosphatase 4, regulatory subunit 2 pseudogene

RIF1 Gene

replication timing regulatory factor 1

This gene encodes a protein that shares homology with the yeast teleomere binding protein, Rap1 interacting factor 1. This protein localizes to aberrant telomeres may be involved in DNA repair. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Apr 2010]

SREK1 Gene

splicing regulatory glutamine/lysine-rich protein 1

This gene encodes a member of a family of serine/arginine-rich (SR) splicing proteins containing RNA recognition motif (RRM) domains. The encoded protein interacts with other SR proteins to modulate splice site selection. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

PDPR Gene

pyruvate dehydrogenase phosphatase regulatory subunit

SIRPAP1 Gene

signal-regulatory protein alpha pseudogene 1

PPP1R10P1 Gene

protein phosphatase 1, regulatory subunit 10 pseudogene 1

LOC102725016 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

PAFAH1B1P1 Gene

platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 pseudogene 1

CD46P1 Gene

CD46 molecule, complement regulatory protein pseudogene 1

SIRPG Gene

signal-regulatory protein gamma

The protein encoded by this gene is a member of the signal-regulatory protein (SIRP) family, and also belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled signaling processes. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

SIRPD Gene

signal-regulatory protein delta

SIRPA Gene

signal-regulatory protein alpha

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled signaling processes. This protein can be phosphorylated by tyrosine kinases. The phospho-tyrosine residues of this PTP have been shown to recruit SH2 domain containing tyrosine phosphatases (PTP), and serve as substrates of PTPs. This protein was found to participate in signal transduction mediated by various growth factor receptors. CD47 has been demonstrated to be a ligand for this receptor protein. This gene and its product share very high similarity with several other members of the SIRP family. These related genes are located in close proximity to each other on chromosome 20p13. Multiple alternatively spliced transcript variants have been determined for this gene. [provided by RefSeq, Jul 2008]

LOC390705 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

PPP1R14D Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14D

Protein phosphatase-1 (PP1; see MIM 176875) is a major cellular phosphatase that reverses serine/threonine protein phosphorylation. PPP1R14D is a PP1 inhibitor that itself is regulated by phosphorylation (Liu et al., 2004 [PubMed 12974676]).[supplied by OMIM, Feb 2010]

PPP1R14B Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B

PPP1R14C Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14C

The degree of protein phosphorylation is regulated by a balance of protein kinase and phosphatase activities. Protein phosphatase-1 (PP1; see MIM 176875) is a signal-transducing phosphatase that influences neuronal activity, protein synthesis, metabolism, muscle contraction, and cell division. PPP1R14C is an inhibitor of PP1 (Liu et al., 2002 [PubMed 11812771]).[supplied by OMIM, Feb 2010]

PPP1R14A Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14A

The protein encoded by this gene belongs to the protein phosphatase 1 (PP1) inhibitor family. This protein is an inhibitor of smooth muscle myosin phosphatase, and has higher inhibitory activity when phosphorylated. Inhibition of myosin phosphatase leads to increased myosin phosphorylation and enhanced smooth muscle contraction. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Sep 2011]

LOC100133326 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

KANSL1L Gene

KAT8 regulatory NSL complex subunit 1-like

PREB Gene

prolactin regulatory element binding

This gene encodes a protein that specifically binds to a Pit1-binding element of the prolactin (PRL) promoter. This protein may act as a transcriptional regulator and is thought to be involved in some of the developmental abnormalities observed in patients with partial trisomy 2p. This gene overlaps the abhydrolase domain containing 1 (ABHD1) gene on the opposite strand. [provided by RefSeq, Jul 2008]

PPP1R12BP1 Gene

protein phosphatase 1, regulatory subunit 12B pseudogene, Y-linked 1

PPP1R12BP2 Gene

protein phosphatase 1, regulatory subunit 12B Y-linked pseudogene 2

RSC1A1 Gene

regulatory solute carrier protein, family 1, member 1

CKS2 Gene

CDC28 protein kinase regulatory subunit 2

CKS2 protein binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. The CKS2 mRNA is found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects specialized role for the encoded protein. [provided by RefSeq, Jul 2008]

LOC100418484 Gene

KAT8 regulatory NSL complex subunit 1 pseudogene

DPM2 Gene

dolichyl-phosphate mannosyltransferase polypeptide 2, regulatory subunit

Dolichol-phosphate mannose (Dol-P-Man) serves as a donor of mannosyl residues on the lumenal side of the endoplasmic reticulum (ER). Lack of Dol-P-Man results in defective surface expression of GPI-anchored proteins. Dol-P-Man is synthesized from GDP-mannose and dolichol-phosphate on the cytosolic side of the ER by the enzyme dolichyl-phosphate mannosyltransferase. The protein encoded by this gene is a hydrophobic protein that contains 2 predicted transmembrane domains and a putative ER localization signal near the C terminus. This protein associates with DPM1 in vivo and is required for the ER localization and stable expression of DPM1 and also enhances the binding of dolichol-phosphate to DPM1. [provided by RefSeq, Jul 2008]

CD59 Gene

CD59 molecule, complement regulatory protein

This gene encodes a cell surface glycoprotein that regulates complement-mediated cell lysis, and it is involved in lymphocyte signal transduction. This protein is a potent inhibitor of the complement membrane attack complex, whereby it binds complement C8 and/or C9 during the assembly of this complex, thereby inhibiting the incorporation of multiple copies of C9 into the complex, which is necessary for osmolytic pore formation. This protein also plays a role in signal transduction pathways in the activation of T cells. Mutations in this gene cause CD59 deficiency, a disease resulting in hemolytic anemia and thrombosis, and which causes cerebral infarction. Multiple alternatively spliced transcript variants, which encode the same protein, have been identified for this gene. [provided by RefSeq, Jul 2008]

PRKAR1AP Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha pseudogene

LOC100130582 Gene

myosin, light chain 9, regulatory pseudogene

LOC100421808 Gene

protein phosphatase 2, regulatory subunit B, gamma pseudogene

LOC100421802 Gene

protein phosphatase 2, regulatory subunit B, alpha pseudogene

LOC647208 Gene

protein phosphatase 2, regulatory subunit B'', beta pseudogene

PPP2R2DP1 Gene

protein phosphatase 2, regulatory subunit B, delta pseudogene 1

LOC149935 Gene

CDK5 regulatory subunit associated protein 3 pseudogene

PPP1R26P5 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 5

PPP1R26P2 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 2

ESRP1 Gene

epithelial splicing regulatory protein 1

ESPR1 is an epithelial cell-type-specific splicing regulator (Warzecha et al., 2009 [PubMed 19285943]).[supplied by OMIM, Aug 2009]

RFX4 Gene

regulatory factor X, 4 (influences HLA class II expression)

This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X3, and X5. It has been shown to interact with itself as well as with regulatory factors X2 and X3, but it does not interact with regulatory factor X1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2011]

RFX5 Gene

regulatory factor X, 5 (influences HLA class II expression)

A lack of MHC-II expression results in a severe immunodeficiency syndrome called MHC-II deficiency, or the bare lymphocyte syndrome (BLS; MIM 209920). At least 4 complementation groups have been identified in B-cell lines established from patients with BLS. The molecular defects in complementation groups B, C, and D all lead to a deficiency in RFX, a nuclear protein complex that binds to the X box of MHC-II promoters. The lack of RFX binding activity in complementation group C results from mutations in the RFX5 gene encoding the 75-kD subunit of RFX (Steimle et al., 1995). RFX5 is the fifth member of the growing family of DNA-binding proteins sharing a novel and highly characteristic DNA-binding domain called the RFX motif. Multiple alternatively spliced transcript variants have been found but the full-length natures of only two have been determined. [provided by RefSeq, Jul 2008]

RFX7 Gene

regulatory factor X, 7

RFX7 is a member of the regulatory factor X (RFX) family of transcription factors (see RFX1, MIM 600006) (Aftab et al., 2008 [PubMed 18673564]).[supplied by OMIM, Mar 2009]

RFX1 Gene

regulatory factor X, 1 (influences HLA class II expression)

This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X2, X3, X4, and X5. It is a transcriptional activator that can bind DNA as a monomer or as a heterodimer with RFX family members X2, X3, and X5, but not with X4. This protein binds to the X-boxes of MHC class II genes and is essential for their expression. Also, it can bind to an inverted repeat that is required for expression of hepatitis B virus genes. [provided by RefSeq, Jul 2008]

RFX2 Gene

regulatory factor X, 2 (influences HLA class II expression)

This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X3, X4, and X5. It is a transcriptional activator that can bind DNA as a monomer or as a heterodimer with other RFX family members. This protein can bind to cis elements in the promoter of the IL-5 receptor alpha gene. Two transcript variants encoding different isoforms have been described for this gene, and both variants utilize alternative polyadenylation sites. [provided by RefSeq, Jul 2008]

RFX3 Gene

regulatory factor X, 3 (influences HLA class II expression)

This gene is a member of the regulatory factor X gene family, which encodes transcription factors that contain a highly-conserved winged helix DNA binding domain. The protein encoded by this gene is structurally related to regulatory factors X1, X2, X4, and X5. It is a transcriptional activator that can bind DNA as a monomer or as a heterodimer with other RFX family members. Multiple transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Aug 2013]

FENDRR Gene

FOXF1 adjacent non-coding developmental regulatory RNA

This gene produces a spliced long non-coding RNA transcribed bidirectionally with FOXF1 on the opposite strand. A similar gene in mouse is essential for normal development of the heart and body wall. The encoded transcript is thought to act by binding to polycomb repressive complex 2 (PRC2) and/or TrxG/MLL complexes to promote the methylation of the promoters of target genes, thus reducing their expression. It has been suggested that this transcript may play a role in the progression of gastric cancer. Alternatively spliced transcript variants have been identified. [provided by RefSeq, Mar 2015]

LOC100422204 Gene

regulatory solute carrier protein, family 1, member 1 pseudogene

PPP1R8P1 Gene

protein phosphatase 1, regulatory subunit 8 pseudogene 1

PPP2R1B Gene

protein phosphatase 2, regulatory subunit A, beta

This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes a beta isoform of the constant regulatory subunit A. Mutations in this gene have been associated with some lung and colon cancers. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP1R26P4 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 4

JADRR Gene

JADE1 adjacent regulatory RNA

TIGAR Gene

TP53 induced glycolysis regulatory phosphatase

This gene is regulated as part of the p53 tumor suppressor pathway and encodes a protein with sequence similarity to the bisphosphate domain of the glycolytic enzyme that degrades fructose-2,6-bisphosphate. The protein functions by blocking glycolysis and directing the pathway into the pentose phosphate shunt. Expression of this protein also protects cells from DNA damaging reactive oxygen species and provides some protection from DNA damage-induced apoptosis. The 12p13.32 region that includes this gene is paralogous to the 11q13.3 region. [provided by RefSeq, Jul 2008]

MYL12B Gene

myosin, light chain 12B, regulatory

The activity of nonmuscle myosin II (see MYH9; MIM 160775) is regulated by phosphorylation of a regulatory light chain, such as MRLC2. This phosphorylation results in higher MgATPase activity and the assembly of myosin II filaments (Iwasaki et al., 2001 [PubMed 11942626]).[supplied by OMIM, Mar 2008]

MYL12A Gene

myosin, light chain 12A, regulatory, non-sarcomeric

This gene encodes a nonsarcomeric myosin regulatory light chain. This protein is activated by phosphorylation and regulates smooth muscle and non-muscle cell contraction. This protein may also be involved in DNA damage repair by sequestering the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 which functions as a repressor of p53-driven apoptosis. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 8.[provided by RefSeq, Dec 2014]

MYLIP Gene

myosin regulatory light chain interacting protein

The ERM protein family members ezrin, radixin, and moesin are cytoskeletal effector proteins linking actin to membrane-bound proteins at the cell surface. Myosin regulatory light chain interacting protein (MYLIP) is a novel ERM-like protein that interacts with myosin regulatory light chain and inhibits neurite outgrowth. [provided by RefSeq, Jul 2008]

CKS1BP4 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 4

PPP2R4 Gene

protein phosphatase 2A activator, regulatory subunit 4

Protein phosphatase 2A is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2A holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B' family. This gene encodes a specific phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase 2A. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

ADIRF Gene

adipogenesis regulatory factor

APM2 gene is exclusively expressed in adipose tissue. Its function is currently unknown. [provided by RefSeq, Jul 2008]

LOC101059972 Gene

myosin, light chain 9, regulatory pseudogene

LOC100132773 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

PAFAH1B1 Gene

platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45kDa)

This locus was identified as encoding a gene that when mutated or lost caused the lissencephaly associated with Miller-Dieker lissencephaly syndrome. This gene encodes the non-catalytic alpha subunit of the intracellular Ib isoform of platelet-activating factor acteylhydrolase, a heterotrimeric enzyme that specifically catalyzes the removal of the acetyl group at the SN-2 position of platelet-activating factor (identified as 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine). Two other isoforms of intracellular platelet-activating factor acetylhydrolase exist: one composed of multiple subunits, the other, a single subunit. In addition, a single-subunit isoform of this enzyme is found in serum. [provided by RefSeq, Apr 2009]

IRF2BP2 Gene

interferon regulatory factor 2 binding protein 2

This gene encodes an interferon regulatory factor-2 (IRF2) binding protein that interacts with the C-terminal transcriptional repression domain of IRF2. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

IRF2BP1 Gene

interferon regulatory factor 2 binding protein 1

IRF2BPL Gene

interferon regulatory factor 2 binding protein-like

This gene encodes a transcription factor that may play a role in regulating female reproductive function. [provided by RefSeq, Jun 2012]

PIK3R6 Gene

phosphoinositide-3-kinase, regulatory subunit 6

Phosphoinositide 3-kinase gamma is a lipid kinase that produces the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. The kinase is composed of a catalytic subunit and one of several regulatory subunits, and is chiefly activated by G protein-coupled receptors. This gene encodes a regulatory subunit, and is distantly related to the phosphoinositide-3-kinase, regulatory subunit 5 gene which is located adjacent to this gene on chromosome 7. The orthologous protein in the mouse binds to both the catalytic subunit and to G(beta/gamma), and mediates activation of the kinase subunit downstream of G protein-coupled receptors. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

PIK3R5 Gene

phosphoinositide-3-kinase, regulatory subunit 5

Phosphatidylinositol 3-kinases (PI3Ks) phosphorylate the inositol ring of phosphatidylinositol at the 3-prime position, and play important roles in cell growth, proliferation, differentiation, motility, survival and intracellular trafficking. The PI3Ks are divided into three classes: I, II and III, and only the class I PI3Ks are involved in oncogenesis. This gene encodes the 101 kD regulatory subunit of the class I PI3K gamma complex, which is a dimeric enzyme, consisting of a 110 kD catalytic subunit gamma and a regulatory subunit of either 55, 87 or 101 kD. This protein recruits the catalytic subunit from the cytosol to the plasma membrane through high-affinity interaction with G-beta-gamma proteins. Multiple alternatively spliced transcript variants encoding two distinct isoforms have been found. [provided by RefSeq, Oct 2011]

PIK3R4 Gene

phosphoinositide-3-kinase, regulatory subunit 4

PIK3R3 Gene

phosphoinositide-3-kinase, regulatory subunit 3 (gamma)

PIK3R2 Gene

phosphoinositide-3-kinase, regulatory subunit 2 (beta)

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that phosphorylates phosphatidylinositol and similar compounds, creating second messengers important in growth signaling pathways. PI3K functions as a heterodimer of a regulatory and a catalytic subunit. The protein encoded by this gene is a regulatory component of PI3K. Two transcript variants, one protein coding and the other non-protein coding, have been found for this gene. [provided by RefSeq, Dec 2012]

PIK3R1 Gene

phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at the 3-prime position. The enzyme comprises a 110 kD catalytic subunit and a regulatory subunit of either 85, 55, or 50 kD. This gene encodes the 85 kD regulatory subunit. Phosphatidylinositol 3-kinase plays an important role in the metabolic actions of insulin, and a mutation in this gene has been associated with insulin resistance. Alternative splicing of this gene results in four transcript variants encoding different isoforms. [provided by RefSeq, Jun 2011]

PPP1R14BP5 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 5

PRKAR1A Gene

protein kinase, cAMP-dependent, regulatory, type I, alpha

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. This gene encodes one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids. Mutations in this gene cause Carney complex (CNC). This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. A nonconventional nuclear localization sequence (NLS) has been found for this protein which suggests a role in DNA replication via the protein serving as a nuclear transport protein for the second subunit of the Replication Factor C (RFC40). Several alternatively spliced transcript variants encoding two different isoforms have been observed. [provided by RefSeq, Jan 2013]

PRKAR1B Gene

protein kinase, cAMP-dependent, regulatory, type I, beta

Cyclic AMP-dependent protein kinase A (PKA) is an essential enzyme in the signaling pathway of the second messenger cAMP. Through phosphorylation of target proteins, PKA controls many biochemical events in the cell including regulation of metabolism, ion transport, and gene transcription. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits and dissociates from the regulatory subunits upon binding of cAMP.[supplied by OMIM, Jun 2009]

JMY Gene

junction mediating and regulatory protein, p53 cofactor

PPP1R14BP4 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 4

PPP1R14BP2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 2

PPP1R14BP3 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 3

PPP1R14BP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 14B pseudogene 1

PPP1R3G Gene

protein phosphatase 1, regulatory subunit 3G

PPP1R3F Gene

protein phosphatase 1, regulatory subunit 3F

This gene encodes a protein that has been identified as one of several type-1 protein phosphatase (PP1) regulatory subunits. One or two of these subunits, together with the well-conserved catalytic subunit, can form the PP1 holoenzyme, where the regulatory subunit functions to regulate substrate specificity and/or targeting to a particular cellular compartment. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

PPP1R3E Gene

protein phosphatase 1, regulatory subunit 3E

PPP1R3D Gene

protein phosphatase 1, regulatory subunit 3D

Phosphorylation of serine and threonine residues in proteins is a crucial step in the regulation of many cellular functions ranging from hormonal regulation to cell division and even short-term memory. The level of phosphorylation is controlled by the opposing actions of protein kinases and protein phosphatases. Protein phosphatase 1 (PP1) is 1 of 4 major serine/threonine-specific protein phosphatases which have been identified in eukaryotic cells. PP1 associates with various regulatory subunits that dictate its subcellular localization and modulate its substrate specificity. Several subunits that target PP1 to glycogen have been identified. This gene encodes a glycogen-targeting subunit of PP1. [provided by RefSeq, Jul 2008]

PPP1R3C Gene

protein phosphatase 1, regulatory subunit 3C

This gene encodes a regulatory subunit of protein phosphatase-1 (PP1). PP1 catalyzes reversible protein phosphorylation, which is important in a wide range of cellular activities: neuronal, muscular, RNA splicing, protein synthesis, cell death, and glycogen metabolism, to name just a few. By interacting with different regulatory subunits, PP1 is directed to different parts of the cell, to different substrates, or to respond to extracellular signals. [provided by RefSeq, Oct 2011]

PPP1R3B Gene

protein phosphatase 1, regulatory subunit 3B

This gene encodes the catalytic subunit of the serine/theonine phosphatase, protein phosphatase-1. The encoded protein is expressed in liver and skeletal muscle tissue and may be involved in regulating glycogen synthesis in these tissues. This gene may be a involved in type 2 diabetes and maturity-onset diabetes of the young. Alternate splicing results in multiple transcript variants that encode the same protein.[provided by RefSeq, Jan 2011]

PPP1R3A Gene

protein phosphatase 1, regulatory subunit 3A

The glycogen-associated form of protein phosphatase-1 (PP1) derived from skeletal muscle is a heterodimer composed of a 37-kD catalytic subunit and a 124-kD targeting and regulatory subunit. This gene encodes the regulatory subunit which binds to muscle glycogen with high affinity, thereby enhancing dephosphorylation of glycogen-bound substrates for PP1 such as glycogen synthase and glycogen phosphorylase kinase. [provided by RefSeq, Jul 2008]

PPP1R37 Gene

protein phosphatase 1, regulatory subunit 37

PPP1R36 Gene

protein phosphatase 1, regulatory subunit 36

PPP1R35 Gene

protein phosphatase 1, regulatory subunit 35

PPP1R32 Gene

protein phosphatase 1, regulatory subunit 32

PPP1R12A Gene

protein phosphatase 1, regulatory subunit 12A

Myosin phosphatase target subunit 1, which is also called the myosin-binding subunit of myosin phosphatase, is one of the subunits of myosin phosphatase. Myosin phosphatase regulates the interaction of actin and myosin downstream of the guanosine triphosphatase Rho. The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP. RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2009]

PPP1R12B Gene

protein phosphatase 1, regulatory subunit 12B

Myosin phosphatase is a protein complex comprised of three subunits: a catalytic subunit (PP1c-delta, protein phosphatase 1, catalytic subunit delta), a large regulatory subunit (MYPT, myosin phosphatase target) and small regulatory subunit (sm-M20). Two isoforms of MYPT have been isolated--MYPT1 and MYPT2, the first of which is widely expressed, and the second of which may be specific to heart, skeletal muscle, and brain. Each of the MYPT isoforms functions to bind PP1c-delta and increase phosphatase activity. This locus encodes both MYTP2 and M20. Alternatively spliced transcript variants encoding different isoforms have been identified. Related pseudogenes have been defined on the Y chromosome. [provided by RefSeq, Oct 2011]

PPP1R12C Gene

protein phosphatase 1, regulatory subunit 12C

The gene encodes a subunit of myosin phosphatase. The encoded protein regulates the catalytic activity of protein phosphatase 1 delta and assembly of the actin cytoskeleton. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Oct 2012]

PPP6R2 Gene

protein phosphatase 6, regulatory subunit 2

Protein phosphatase regulatory subunits, such as SAPS2, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS2 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R3 Gene

protein phosphatase 6, regulatory subunit 3

Protein phosphatase regulatory subunits, such as SAPS3, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS3 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP6R1 Gene

protein phosphatase 6, regulatory subunit 1

Protein phosphatase regulatory subunits, such as SAPS1, modulate the activity of protein phosphatase catalytic subunits by restricting substrate specificity, recruiting substrates, and determining the intracellular localization of the holoenzyme. SAPS1 is a regulatory subunit for the protein phosphatase-6 catalytic subunit (PPP6C; MIM 612725) (Stefansson and Brautigan, 2006 [PubMed 16769727]).[supplied by OMIM, Nov 2010]

PPP1R26P1 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 1

LOC100131868 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

LOC100422398 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

LOC100418589 Gene

myosin, light chain 12B, regulatory pseudogene

STARP1 Gene

steroidogenic acute regulatory protein pseudogene 1

CDKAL1 Gene

CDK5 regulatory subunit associated protein 1-like 1

The protein encoded by this gene is a member of the methylthiotransferase family. The function of this gene is not known. Genome-wide association studies have linked single nucleotide polymorphisms in an intron of this gene with susceptibilty to type 2 diabetes. [provided by RefSeq, May 2010]

PPP4R4 Gene

protein phosphatase 4, regulatory subunit 4

The protein encoded by this gene is a HEAT-like repeat-containing protein. The HEAT repeat is a tandemly repeated, 37-47 amino acid long module occurring in a number of cytoplasmic proteins. Arrays of HEAT repeats form a rod-like helical structure and appear to function as protein-protein interaction surfaces. The repeat-containing region of this protein has some similarity to the constant regulatory domain of the protein phosphatase 2A PR65/A subunit. The function of this particular gene product has not been determined. Alternative splicing has been observed for this gene and two transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP4R1 Gene

protein phosphatase 4, regulatory subunit 1

This gene encodes one of several alternate regulatory subunits of serine/threonine protein phosphatase 4 (PP4). The protein features multiple HEAT repeats. This protein forms a complex with PP4RC. This complex may have a distinct role from other PP4 complexes, including regulation of HDAC3 (Zhang et al., PMID: 15805470). There is also a transcribed pseudogene on chromosome 20. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2012]

PPP4R2 Gene

protein phosphatase 4, regulatory subunit 2

KANSL3 Gene

KAT8 regulatory NSL complex subunit 3

KANSL2 Gene

KAT8 regulatory NSL complex subunit 2

KANSL1 Gene

KAT8 regulatory NSL complex subunit 1

This gene encodes a nuclear protein that is a subunit of two protein complexes involved with histone acetylation, the MLL1 complex and the NSL1 complex. The corresponding protein in Drosophila interacts with K(lysine) acetyltransferase 8, which is also a subunit of both the MLL1 and NSL1 complexes. [provided by RefSeq, Jun 2012]

CDK5R1 Gene

cyclin-dependent kinase 5, regulatory subunit 1 (p35)

The protein encoded by this gene (p35) is a neuron-specific activator of cyclin-dependent kinase 5 (CDK5); the activation of CDK5 is required for proper development of the central nervous system. The p35 form of this protein is proteolytically cleaved by calpain, generating a p25 form. The cleavage of p35 into p25 results in relocalization of the protein from the cell periphery to nuclear and perinuclear regions. P25 deregulates CDK5 activity by prolonging its activation and changing its cellular location. The p25 form accumulates in the brain neurons of patients with Alzheimer's disease. This accumulation correlates with an increase in CDK5 kinase activity, and may lead to aberrantly phosphorylated forms of the microtubule-associated protein tau, which contributes to Alzheimer's disease. [provided by RefSeq, Jul 2008]

NSRP1P1 Gene

nuclear speckle splicing regulatory protein 1 pseudogene 1

LOC100418588 Gene

myosin, light chain 12B, regulatory pseudogene

LOC100418587 Gene

myosin, light chain 12B, regulatory pseudogene

MYL7 Gene

myosin, light chain 7, regulatory

MYL5 Gene

myosin, light chain 5, regulatory

This gene encodes one of the myosin light chains, a component of the hexameric ATPase cellular motor protein myosin. Myosin is composed of two heavy chains, two nonphosphorylatable alkali light chains, and two phosphorylatable regulatory light chains. This gene product, one of the regulatory light chains, is expressed in fetal muscle and in adult retina, cerebellum, and basal ganglia. [provided by RefSeq, Jul 2008]

MYL2 Gene

myosin, light chain 2, regulatory, cardiac, slow

Thus gene encodes the regulatory light chain associated with cardiac myosin beta (or slow) heavy chain. Ca+ triggers the phosphorylation of regulatory light chain that in turn triggers contraction. Mutations in this gene are associated with mid-left ventricular chamber type hypertrophic cardiomyopathy. [provided by RefSeq, Jul 2008]

MYL9 Gene

myosin, light chain 9, regulatory

Myosin, a structural component of muscle, consists of two heavy chains and four light chains. The protein encoded by this gene is a myosin light chain that may regulate muscle contraction by modulating the ATPase activity of myosin heads. The encoded protein binds calcium and is activated by myosin light chain kinase. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

IRF5P1 Gene

interferon regulatory factor 5 pseudogene 1

PPP1R1AP1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A pseudogene 1

PPP1R7 Gene

protein phosphatase 1, regulatory subunit 7

This gene encodes a protein subunit that regulates the activity of the serine/threonine phosphatase, protein phosphatase-1. The encoded protein is required for completion of the mitotic cycle and for targeting protein phosphatase-1 to mitotic kinetochores. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPP1R2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2

RFX6 Gene

regulatory factor X, 6

The nuclear protein encoded by this gene is a member of the regulatory factor X (RFX) family of transcription factors. Studies in mice suggest that this gene is specifically required for the differentiation of islet cells for the production of insulin, but not for the differentiation of pancreatic polypeptide-producing cells. It regulates the transcription factors involved in beta-cell maturation and function, thus, restricting the expression of the beta-cell differentiation and specification genes. Mutations in this gene are associated with Mitchell-Riley syndrome, which is characterized by neonatal diabetes with pancreatic hypoplasia, duodenal and jejunal atresia, and gall bladder agenesis.[provided by RefSeq, Sep 2010]

LOC100131360 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

KCNE2 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 2

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a small integral membrane subunit that assembles with the KCNH2 gene product, a pore-forming protein, to alter its function. This gene is expressed in heart and muscle and the gene mutations are associated with cardiac arrhythmia. [provided by RefSeq, Jul 2008]

KCNE3 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 3

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a type I membrane protein, and a beta subunit that assembles with a potassium channel alpha-subunit to modulate the gating kinetics and enhance stability of the multimeric complex. This gene is prominently expressed in the kidney. A missense mutation in this gene is associated with hypokalemic periodic paralysis. [provided by RefSeq, Jul 2008]

KCNE1 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 1

The product of this gene belongs to the potassium channel KCNE family. Potassium ion channels are essential to many cellular functions and show a high degree of diversity, varying in their electrophysiologic and pharmacologic properties. This gene encodes a transmembrane protein known to associate with the product of the KVLQT1 gene to form the delayed rectifier potassium channel. Mutation in this gene are associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long-QT syndrome. Alternatively spliced transcript variants encoding the same protein have been identified. [provided by RefSeq, Jul 2008]

KCNE4 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 4

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a member of the potassium channel, voltage-gated, isk-related subfamily. This member is a type I membrane protein, and a beta subunit that assembles with a potassium channel alpha-subunit to modulate the gating kinetics and enhance stability of the multimeric complex. This gene is prominently expressed in the embryo and in adult uterus. [provided by RefSeq, Jul 2008]

KCNE5 Gene

potassium channel, voltage gated subfamily E regulatory beta subunit 5

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. This gene encodes a membrane protein which has sequence similarity to the KCNE1 gene product, a member of the potassium channel, voltage-gated, isk-related subfamily. This intronless gene is deleted in AMME contiguous gene syndrome and may be involved in the cardiac and neurologic abnormalities found in the AMME contiguous gene syndrome. [provided by RefSeq, Jul 2008]

SREBF2 Gene

sterol regulatory element binding transcription factor 2

This gene encodes a member of the a ubiquitously expressed transcription factor that controls cholesterol homeostasis by regulating transcription of sterol-regulated genes. The encoded protein contains a basic helix-loop-helix-leucine zipper (bHLH-Zip) domain and binds the sterol regulatory element 1 motif. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

SREBF1 Gene

sterol regulatory element binding transcription factor 1

This gene encodes a transcription factor that binds to the sterol regulatory element-1 (SRE1), which is a decamer flanking the low density lipoprotein receptor gene and some genes involved in sterol biosynthesis. The protein is synthesized as a precursor that is attached to the nuclear membrane and endoplasmic reticulum. Following cleavage, the mature protein translocates to the nucleus and activates transcription by binding to the SRE1. Sterols inhibit the cleavage of the precursor, and the mature nuclear form is rapidly catabolized, thereby reducing transcription. The protein is a member of the basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor family. This gene is located within the Smith-Magenis syndrome region on chromosome 17. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

MYRFL Gene

myelin regulatory factor-like

PPP2R3B Gene

protein phosphatase 2, regulatory subunit B'', beta

Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the beta subfamily of regulatory subunit B''. [provided by RefSeq, Apr 2010]

PPP2R3C Gene

protein phosphatase 2, regulatory subunit B'', gamma

This gene encodes a regulatory subunit of the serine/threonine phosphatase, protein phosphatase 2. This protein is localized to both nuclear and cytoplasmic regions depending on cell cycle phase. Homozygous conditional knockout mice for this gene exhibit reduced numbers and impaired proliferation of immune system B cells. This protein may regulate the expression of the P-glycoprotein ATP-binding cassette transporter through its phosphatase activity. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

PPP2R3A Gene

protein phosphatase 2, regulatory subunit B'', alpha

This gene encodes one of the regulatory subunits of the protein phosphatase 2. Protein phosphatase 2 (formerly named type 2A) is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the alpha subfamily of regulatory subunit B''. Alternative splicing results in multiple transcript variants encoding different isoforms.[provided by RefSeq, Jun 2010]

LOC100422399 Gene

protein kinase, cAMP-dependent, regulatory, type II, beta pseudogene

LOC105379572 Gene

KAT8 regulatory NSL complex subunit 1-like

PPP1R8 Gene

protein phosphatase 1, regulatory subunit 8

This gene, through alternative splicing, encodes three different isoforms. Two of the protein isoforms encoded by this gene are specific inhibitors of type 1 serine/threonine protein phosphatases and can bind but not cleave RNA. The third protein isoform lacks the phosphatase inhibitory function but is a single-strand endoribonuclease comparable to RNase E of E. coli. This isoform requires magnesium for its function and cleaves specific sites in A+U-rich regions of RNA. [provided by RefSeq, Jul 2008]

KCNMB1 Gene

potassium channel subfamily M regulatory beta subunit 1

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the product of this gene, the modulatory beta subunit. Intracellular calcium regulates the physical association between the alpha and beta subunits. [provided by RefSeq, Jul 2008]

KCNMB3 Gene

potassium channel subfamily M regulatory beta subunit 3

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which may partially inactivate or slightly decrease the activation time of MaxiK alpha subunit currents. Alternative splicing results in multiple transcript variants. A related pseudogene has been identified on chromosome 22. [provided by RefSeq, Jul 2009]

KCNMB2 Gene

potassium channel subfamily M regulatory beta subunit 2

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which decreases the activation time of MaxiK alpha subunit currents. Alternative splicing results in multiple transcript variants of this gene. Additional variants are discussed in the literature, but their full length nature has not been described. [provided by RefSeq, Jul 2013]

KCNMB4 Gene

potassium channel subfamily M regulatory beta subunit 4

MaxiK channels are large conductance, voltage and calcium-sensitive potassium channels which are fundamental to the control of smooth muscle tone and neuronal excitability. MaxiK channels can be formed by 2 subunits: the pore-forming alpha subunit and the modulatory beta subunit. The protein encoded by this gene is an auxiliary beta subunit which slows activation kinetics, leads to steeper calcium sensitivity, and shifts the voltage range of current activation to more negative potentials than does the beta 1 subunit. [provided by RefSeq, Jul 2008]

KHSRP Gene

KH-type splicing regulatory protein

The KHSRP gene encodes a multifunctional RNA-binding protein implicated in a variety of cellular processes, including transcription, alternative pre-mRNA splicing, and mRNA localization (Min et al., 1997 [PubMed 9136930]; Gherzi et al., 2004 [PubMed 15175153]).[supplied by OMIM, Apr 2010]

LOC283922 Gene

pyruvate dehydrogenase phosphatase regulatory subunit pseudogene

LOC105378594 Gene

nuclear speckle splicing regulatory protein 1-like

LOC100418682 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100418683 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100418684 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene

LOC100288016 Gene

serine/threonine-protein phosphatase 4 regulatory subunit 2-like

LOC100422587 Gene

platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45kDa) pseudogene

PPP1R1A Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1A

PPP1R1C Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1C

Protein phosphatase-1 (PP1) is a major serine/threonine phosphatase that regulates a variety of cellular functions. PP1 consists of a catalytic subunit (see PPP1CA; MIM 176875) and regulatory subunits that determine the subcellular localization of PP1 or regulate its function. PPP1R1C belongs to a group of PP1 inhibitory subunits that are themselves regulated by phosphorylation (Wang et al., 2008 [PubMed 18310074]).[supplied by OMIM, Feb 2010]

PPP1R1B Gene

protein phosphatase 1, regulatory (inhibitor) subunit 1B

This gene encodes a bifunctional signal transduction molecule. Dopaminergic and glutamatergic receptor stimulation regulates its phosphorylation and function as a kinase or phosphatase inhibitor. As a target for dopamine, this gene may serve as a therapeutic target for neurologic and psychiatric disorders. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

PPP1R11 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11

This gene encodes a specific inhibitor of protein phosphatase-1 (PP1) with a differential sensitivity toward the metal-independent and metal-dependent forms of PP1. The gene is located within the major histocompatibility complex class I region on chromosome 6. [provided by RefSeq, Jul 2008]

PPP1R10 Gene

protein phosphatase 1, regulatory subunit 10

This gene encodes a protein phosphatase 1 binding protein. The encoded protein plays a role in many cellular processes including cell cycle progression, DNA repair and apoptosis by regulating the activity of protein phosphatase 1. This gene lies within the major histocompatibility complex class I region on chromosome 6, and alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Jul 2012]

PPP1R18 Gene

protein phosphatase 1, regulatory subunit 18

Protein phosphatase-1 (PP1; see MIM 176875) interacts with regulatory subunits that target the enzyme to different cellular locations and change its activity toward specific substrates. Phostensin is a regulatory subunit that targets PP1 to F-actin (see MIM 102610) cytoskeleton (Kao et al., 2007 [PubMed 17374523]).[supplied by OMIM, Mar 2008]

SIRPB2 Gene

signal-regulatory protein beta 2

SIRPB1 Gene

signal-regulatory protein beta 1

The protein encoded by this gene is a member of the signal-regulatory-protein (SIRP) family, and also belongs to the immunoglobulin superfamily. SIRP family members are receptor-type transmembrane glycoproteins known to be involved in the negative regulation of receptor tyrosine kinase-coupled signaling processes. This protein was found to interact with TYROBP/DAP12, a protein bearing immunoreceptor tyrosine-based activation motifs. This protein was also reported to participate in the recruitment of tyrosine kinase SYK. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2009]

RPTOR Gene

regulatory associated protein of MTOR, complex 1

This gene encodes a component of a signaling pathway that regulates cell growth in response to nutrient and insulin levels. The encoded protein forms a stoichiometric complex with the mTOR kinase, and also associates with eukaryotic initiation factor 4E-binding protein-1 and ribosomal protein S6 kinase. The protein positively regulates the downstream effector ribosomal protein S6 kinase, and negatively regulates the mTOR kinase. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

MYRF Gene

myelin regulatory factor

This gene encodes a transcription factor that is required for central nervous system myelination and may regulate oligodendrocyte differentiation. It is thought to act by increasing the expression of genes that effect myelin production but may also directly promote myelin gene expression. Loss of a similar gene in mouse models results in severe demyelination. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2014]

PPP1R2P3 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 3

PPP1R9A Gene

protein phosphatase 1, regulatory subunit 9A

This gene is imprinted, and located in a cluster of imprinted genes on chromosome 7q12. This gene is transcribed in both neuronal and multiple embryonic tissues, and it is maternally expressed mainly in embryonic skeletal muscle tissues and biallelically expressed in other embryonic tissues. The protein encoded by this gene includes a PDZ domain and a sterile alpha motif (SAM). It is a regulatory subunit of protein phosphatase I, and controls actin cytoskeleton reorganization. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]

PPP1R9B Gene

protein phosphatase 1, regulatory subunit 9B

This gene encodes a scaffold protein that functions as a regulatory subunit of protein phosphatase 1a. Expression of this gene is particularly high in dendritic spines, suggesting that the encoded protein may play a role in receiving signals from the central nervous system. The encoded protein has putative tumor suppressor function and decreased expression has been observed in tumors. [provided by RefSeq, Feb 2014]

PPP3R2 Gene

protein phosphatase 3, regulatory subunit B, beta

PPP3R1 Gene

protein phosphatase 3, regulatory subunit B, alpha

CKS1BP7 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 7

CKS1BP6 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 6

CKS1BP5 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 5

CKS1BP3 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 3

CKS1BP2 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 2

CKS1BP1 Gene

CDC28 protein kinase regulatory subunit 1B pseudogene 1

PAFAH1B1P2 Gene

platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 pseudogene 2

SARAF Gene

store-operated calcium entry-associated regulatory factor

SRMS Gene

src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites

RFXAP Gene

regulatory factor X-associated protein

Major histocompatibility (MHC) class II molecules are transmembrane proteins that have a central role in development and control of the immune system. The protein encoded by this gene, along with regulatory factor X-associated ankyrin-containing protein and regulatory factor-5, forms a complex that binds to the X box motif of certain MHC class II gene promoters and activates their transcription. Once bound to the promoter, this complex associates with the non-DNA-binding factor MHC class II transactivator, which controls the cell type specificity and inducibility of MHC class II gene expression. Mutations in this gene have been linked to bare lymphocyte syndrome type II, complementation group D. Transcript variants utilizing different polyA signals have been found for this gene. [provided by RefSeq, Jul 2008]

PPP6R2P1 Gene

protein phosphatase 6, regulatory subunit 2 pseudogene 1

CDK5RAP2 Gene

CDK5 regulatory subunit associated protein 2

This gene encodes a regulator of CDK5 (cyclin-dependent kinase 5) activity. The protein encoded by this gene is localized to the centrosome and Golgi complex, interacts with CDK5R1 and pericentrin (PCNT), plays a role in centriole engagement and microtubule nucleation, and has been linked to primary microcephaly and Alzheimer's disease. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2013]

CDK5RAP3 Gene

CDK5 regulatory subunit associated protein 3

This gene encodes a protein that has been reported to function in signaling pathways governing transcriptional regulation and cell cycle progression. It may play a role in tumorigenesis and metastasis. A pseudogene of this gene is located on the long arm of chromosome 20. Alternative splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, May 2013]

CDK5RAP1 Gene

CDK5 regulatory subunit associated protein 1

This gene encodes a regulator of cyclin-dependent kinase 5 activity. This protein has also been reported to modify RNA by adding a methylthio-group and may thus have a dual function as an RNA methylthiotransferase and as an inhibitor of cyclin-dependent kinase 5 activity. Alternative splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, May 2013]

PPP1R15A Gene

protein phosphatase 1, regulatory subunit 15A

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The induction of this gene by ionizing radiation occurs in certain cell lines regardless of p53 status, and its protein response is correlated with apoptosis following ionizing radiation. [provided by RefSeq, Jul 2008]

PPP1R15B Gene

protein phosphatase 1, regulatory subunit 15B

PPP1R15B promotes dephosphorylation of the transcription initiation factor EIF2-alpha (EIF2S1; MIM 603907) through recruitment of protein phosphatase-1 (PP1) catalytic subunits (see MIM 176875) (Harding et al., 2009 [PubMed 19181853]).[supplied by OMIM, Feb 2010]

PPP1R2P1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 1

PPP1R2P2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 2

PPP1R2P5 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 5

PPP1R2P4 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 4

PPP1R2P6 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 6

PPP1R2P9 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 9

PPP1R2P8 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 8

PPP2R5D Gene

protein phosphatase 2, regulatory subunit B', delta

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a delta isoform of the regulatory subunit B56 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP2R5E Gene

protein phosphatase 2, regulatory subunit B', epsilon isoform

The protein encoded by this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an epsilon isoform of the regulatory subunit B56 subfamily. Multiple transcript variants encoding several different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

PPP2R5A Gene

protein phosphatase 2, regulatory subunit B', alpha

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an alpha isoform of the regulatory subunit B56 subfamily. Alternative transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Dec 2010]

PPP2R5B Gene

protein phosphatase 2, regulatory subunit B', beta

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B56 subfamily. [provided by RefSeq, Jul 2008]

PPP2R5C Gene

protein phosphatase 2, regulatory subunit B', gamma

The product of this gene belongs to the phosphatase 2A regulatory subunit B family. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a gamma isoform of the regulatory subunit B56 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

STAR Gene

steroidogenic acute regulatory protein

The protein encoded by this gene plays a key role in the acute regulation of steroid hormone synthesis by enhancing the conversion of cholesterol into pregnenolone. This protein permits the cleavage of cholesterol into pregnenolone by mediating the transport of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane. Mutations in this gene are a cause of congenital lipoid adrenal hyperplasia (CLAH), also called lipoid CAH. A pseudogene of this gene is located on chromosome 13. [provided by RefSeq, Jul 2008]

IRF3 Gene

interferon regulatory factor 3

This gene encodes a member of the interferon regulatory transcription factor (IRF) family. The encoded protein is found in an inactive cytoplasmic form that upon serine/threonine phosphorylation forms a complex with CREBBP. This complex translocates to the nucleus and activates the transcription of interferons alpha and beta, as well as other interferon-induced genes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Nov 2011]

IRF2 Gene

interferon regulatory factor 2

IRF2 encodes interferon regulatory factor 2, a member of the interferon regulatory transcription factor (IRF) family. IRF2 competitively inhibits the IRF1-mediated transcriptional activation of interferons alpha and beta, and presumably other genes that employ IRF1 for transcription activation. However, IRF2 also functions as a transcriptional activator of histone H4. [provided by RefSeq, Jul 2008]

IRF1 Gene

interferon regulatory factor 1

IRF1 encodes interferon regulatory factor 1, a member of the interferon regulatory transcription factor (IRF) family. IRF1 serves as an activator of interferons alpha and beta transcription, and in mouse it has been shown to be required for double-stranded RNA induction of these genes. IRF1 also functions as a transcription activator of genes induced by interferons alpha, beta, and gamma. Further, IRF1 has been shown to play roles in regulating apoptosis and tumor-suppressoion. [provided by RefSeq, Jul 2008]

IRF7 Gene

interferon regulatory factor 7

IRF7 encodes interferon regulatory factor 7, a member of the interferon regulatory transcription factor (IRF) family. IRF7 has been shown to play a role in the transcriptional activation of virus-inducible cellular genes, including interferon beta chain genes. Inducible expression of IRF7 is largely restricted to lymphoid tissue. Multiple IRF7 transcript variants have been identified, although the functional consequences of these have not yet been established. [provided by RefSeq, Jul 2008]

IRF6 Gene

interferon regulatory factor 6

This gene encodes a member of the interferon regulatory transcription factor (IRF) family. Family members share a highly-conserved N-terminal helix-turn-helix DNA-binding domain and a less conserved C-terminal protein-binding domain. The encoded protein may be a transcriptional activator. Mutations in this gene can cause van der Woude syndrome and popliteal pterygium syndrome. Mutations in this gene are also associated with non-syndromic orofacial cleft type 6. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2011]

IRF5 Gene

interferon regulatory factor 5

This gene encodes a member of the interferon regulatory factor (IRF) family, a group of transcription factors with diverse roles, including virus-mediated activation of interferon, and modulation of cell growth, differentiation, apoptosis, and immune system activity. Members of the IRF family are characterized by a conserved N-terminal DNA-binding domain containing tryptophan (W) repeats. Multiple transcript variants encoding different isoforms have been found for this gene, and a 30-nt indel polymorphism (SNP rs60344245) can result in loss of a 10-aa segment. [provided by RefSeq, Mar 2010]

IRF4 Gene

interferon regulatory factor 4

The protein encoded by this gene belongs to the IRF (interferon regulatory factor) family of transcription factors, characterized by an unique tryptophan pentad repeat DNA-binding domain. The IRFs are important in the regulation of interferons in response to infection by virus, and in the regulation of interferon-inducible genes. This family member is lymphocyte specific and negatively regulates Toll-like-receptor (TLR) signaling that is central to the activation of innate and adaptive immune systems. A chromosomal translocation involving this gene and the IgH locus, t(6;14)(p25;q32), may be a cause of multiple myeloma. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2010]

IRF9 Gene

interferon regulatory factor 9

IRF8 Gene

interferon regulatory factor 8

Interferon consensus sequence-binding protein (ICSBP) is a transcription factor of the interferon (IFN) regulatory factor (IRF) family. Proteins of this family are composed of a conserved DNA-binding domain in the N-terminal region and a divergent C-terminal region that serves as the regulatory domain. The IRF family proteins bind to the IFN-stimulated response element (ISRE) and regulate expression of genes stimulated by type I IFNs, namely IFN-alpha and IFN-beta. IRF family proteins also control expression of IFN-alpha and IFN-beta-regulated genes that are induced by viral infection. [provided by RefSeq, Jul 2008]

PPP1R42 Gene

protein phosphatase 1, regulatory subunit 42

PPP4R1L Gene

protein phosphatase 4, regulatory subunit 1-like (pseudogene)

CD46 Gene

CD46 molecule, complement regulatory protein

The protein encoded by this gene is a type I membrane protein and is a regulatory part of the complement system. The encoded protein has cofactor activity for inactivation of complement components C3b and C4b by serum factor I, which protects the host cell from damage by complement. In addition, the encoded protein can act as a receptor for the Edmonston strain of measles virus, human herpesvirus-6, and type IV pili of pathogenic Neisseria. Finally, the protein encoded by this gene may be involved in the fusion of the spermatozoa with the oocyte during fertilization. Mutations at this locus have been associated with susceptibility to hemolytic uremic syndrome. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jun 2010]

LOC101060304 Gene

protein phosphatase 1 regulatory subunit 26-like

KCNAB1 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 1

Potassium channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member includes distinct isoforms which are encoded by alternatively spliced transcript variants of this gene. Some of these isoforms are beta subunits, which form heteromultimeric complexes with alpha subunits and modulate the activity of the pore-forming alpha subunits. [provided by RefSeq, Apr 2015]

KCNAB3 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 3

This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. The encoded protein is one of the beta subunits, which are auxiliary proteins associating with functional Kv-alpha subunits. The encoded protein forms a heterodimer with the potassium voltage-gated channel, shaker-related subfamily, member 5 gene product and regulates the activity of the alpha subunit. [provided by RefSeq, May 2012]

KCNAB2 Gene

potassium channel, voltage gated subfamily A regulatory beta subunit 2

Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member is one of the beta subunits, which are auxiliary proteins associating with functional Kv-alpha subunits. This member alters functional properties of the KCNA4 gene product. Alternative splicing of this gene results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Dec 2010]

PPP1R26P3 Gene

protein phosphatase 1, regulatory subunit 26 pseudogene 3

PPP2R1A Gene

protein phosphatase 2, regulatory subunit A, alpha

This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes an alpha isoform of the constant regulatory subunit A. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP1R11P2 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11 pseudogene 2

PPP1R11P1 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 11 pseudogene 1

LOC154937 Gene

protein phosphatase 2, regulatory subunit B', epsilon isoform pseudogene

LOC100418590 Gene

myosin, light chain 12B, regulatory pseudogene

CDK5R2 Gene

cyclin-dependent kinase 5, regulatory subunit 2 (p39)

The protein encoded by this gene is a neuron-specific activator of CDK5 kinase. It associates with CDK5 to form an active kinase. This protein and neuron-specific CDK5 activator CDK5R1/p39NCK5A both share limited similarity to cyclins, and thus may define a distinct family of cyclin-dependent kinase activating proteins. [provided by RefSeq, Jul 2008]

LOC101060852 Gene

protein phosphatase 1 regulatory subunit 26-like

ESRP2 Gene

epithelial splicing regulatory protein 2

ESPR2 is an epithelial cell-type-specific splicing regulator (Warzecha et al., 2009 [PubMed 19285943]).[supplied by OMIM, Aug 2009]

CREBRF Gene

CREB3 regulatory factor

PPP1R16A Gene

protein phosphatase 1, regulatory subunit 16A

PPP1R16B Gene

protein phosphatase 1, regulatory subunit 16B

The protein encoded by this gene is membrane-associated and contains five ankyrin repeats, a protein phosphatase-1-interacting domain, and a carboxy-terminal CAAX box domain. Synthesis of the encoded protein is inhibited by transforming growth factor beta-1. The protein may bind to the membrane through its CAAX box domain and may act as a signaling molecule through interaction with protein phosphatase-1. Alternatively spliced transcript variants encoding different isoforms have been identified in this gene.[provided by RefSeq, Feb 2010]

LOC102724991 Gene

serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit beta

RFXANK Gene

regulatory factor X-associated ankyrin-containing protein

Major histocompatibility (MHC) class II molecules are transmembrane proteins that have a central role in development and control of the immune system. The protein encoded by this gene, along with regulatory factor X-associated protein and regulatory factor-5, forms a complex that binds to the X box motif of certain MHC class II gene promoters and activates their transcription. Once bound to the promoter, this complex associates with the non-DNA-binding factor MHC class II transactivator, which controls the cell type specificity and inducibility of MHC class II gene expression. This protein contains ankyrin repeats involved in protein-protein interactions. Mutations in this gene have been linked to bare lymphocyte syndrome type II, complementation group B. Multiple alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2013]

LOC100128052 Gene

protein phosphatase 2, regulatory subunit B', gamma pseudogene

LOC102724526 Gene

protein phosphatase 1 regulatory subunit 26-like

KHSRPP1 Gene

KH-type splicing regulatory protein pseudogene 1

TRERNA1 Gene

translation regulatory long non-coding RNA 1

LOC101059962 Gene

serine/threonine-protein phosphatase 1 regulatory subunit 10-like

SIRPB3P Gene

signal-regulatory protein beta 3, pseudogene

MYL10 Gene

myosin, light chain 10, regulatory

PPP2R2D Gene

protein phosphatase 2, regulatory subunit B, delta

PPP2R2A Gene

protein phosphatase 2, regulatory subunit B, alpha

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes an alpha isoform of the regulatory subunit B55 subfamily. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]

PPP2R2C Gene

protein phosphatase 2, regulatory subunit B, gamma

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a gamma isoform of the regulatory subunit B55 subfamily. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

PPP2R2B Gene

protein phosphatase 2, regulatory subunit B, beta

The product of this gene belongs to the phosphatase 2 regulatory subunit B family. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The B regulatory subunit might modulate substrate selectivity and catalytic activity. This gene encodes a beta isoform of the regulatory subunit B55 subfamily. Defects in this gene cause autosomal dominant spinocerebellar ataxia 12 (SCA12), a disease caused by degeneration of the cerebellum, sometimes involving the brainstem and spinal cord, and in resulting in poor coordination of speech and body movements. Multiple alternatively spliced variants, which encode different isoforms, have been identified for this gene. The 5' UTR of some of these variants includes a CAG trinucleotide repeat sequence (7-28 copies) that can be expanded to 66-78 copies in cases of SCA12. [provided by RefSeq, Jul 2008]

PPP1R17 Gene

protein phosphatase 1, regulatory subunit 17

The protein encoded by this gene is found primarily in cerebellar Purkinje cells, where it functions as a protein phosphatase inhibitor. The encoded protein is a substrate for cGMP-dependent protein kinase. An allele of this gene was discovered that increases susceptibility to hypercholesterolemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

AP1AR Gene

adaptor-related protein complex 1 associated regulatory protein

PPP1R2P10 Gene

protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 10

EDRF1 Gene

erythroid differentiation regulatory factor 1

This gene may play a role in erythroid cell differentiation. The encoded protein inhibits DNA binding of the erythroid transcription factor GATA-1 and may regulate the expression of alpha-globin and gamma-globin. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

PPP2R5CP Gene

protein phosphatase 2, regulatory subunit B', gamma pseudogene

MTF1 Gene

metal-regulatory transcription factor 1

This gene encodes a transcription factor that induces expression of metallothioneins and other genes involved in metal homeostasis in response to heavy metals such as cadmium, zinc, copper, and silver. The protein is a nucleocytoplasmic shuttling protein that accumulates in the nucleus upon heavy metal exposure and binds to promoters containing a metal-responsive element (MRE). [provided by RefSeq, Jul 2008]

CNEP1R1 Gene

CTD nuclear envelope phosphatase 1 regulatory subunit 1

This gene encodes a transmembrane protein that belongs to the Tmemb_18A family. A similar protein in yeast is a component of an endoplasmic reticulum-associated protein phosphatase complex and is thought to play a role in the synthesis of triacylglycerol. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

ETFRF1 Gene

electron transfer flavoprotein regulatory factor 1

PPP4R3B Gene

protein phosphatase 4 regulatory subunit 3B

PPP4R3A Gene

protein phosphatase 4 regulatory subunit 3A

CBARP Gene

CACN subunit beta associated regulatory protein

PPP4R3C Gene

protein phosphatase 4 regulatory subunit 3C

SPAAR Gene

small regulatory polypeptide of amino acid response

MAILR Gene

macrophage interferon regulatory lncRNA

CHASERR Gene

CHD2 adjacent suppressive regulatory RNA

GRASLND Gene

glycosaminoglycan regulatory associated long non-coding RNA

DRC3 Gene

dynein regulatory complex subunit 3

DRC5 Gene

dynein regulatory complex subunit 5

DRC2 Gene

dynein regulatory complex subunit 2

DRC9 Gene

dynein regulatory complex subunit 9

DRC4 Gene

dynein regulatory complex subunit 4

DRC10 Gene

dynein regulatory complex subunit 10

DRC8 Gene

dynein regulatory complex subunit 8

DRC11 Gene

dynein regulatory complex subunit 11

DRC11L Gene

dynein regulatory complex subunit 11 like

LRP8 Gene

low density lipoprotein receptor-related protein 8, apolipoprotein e receptor

This gene encodes a member of the low density lipoprotein receptor (LDLR) family. Low density lipoprotein receptors are cell surface proteins that play roles in both signal transduction and receptor-mediated endocytosis of specific ligands for lysosomal degradation. The encoded protein plays a critical role in the migration of neurons during development by mediating Reelin signaling, and also functions as a receptor for the cholesterol transport protein apolipoprotein E. Expression of this gene may be a marker for major depressive disorder. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jun 2011]

ROR2 Gene

receptor tyrosine kinase-like orphan receptor 2

The protein encoded by this gene is a receptor protein tyrosine kinase and type I transmembrane protein that belongs to the ROR subfamily of cell surface receptors. The protein may be involved in the early formation of the chondrocytes and may be required for cartilage and growth plate development. Mutations in this gene can cause brachydactyly type B, a skeletal disorder characterized by hypoplasia/aplasia of distal phalanges and nails. In addition, mutations in this gene can cause the autosomal recessive form of Robinow syndrome, which is characterized by skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly, and a dysmorphic facial appearance. [provided by RefSeq, Jul 2008]

ROR1 Gene

receptor tyrosine kinase-like orphan receptor 1

This gene encodes a receptor tyrosine kinase-like orphan receptor that modulates neurite growth in the central nervous system. The encoded protein is a glycosylated type I membrane protein that belongs to the ROR subfamily of cell surface receptors. It is a pseudokinase that lacks catalytic activity and may interact with the non-canonical Wnt signalling pathway. This gene is highly expressed during early embryonic development but expressed at very low levels in adult tissues. Increased expression of this gene is associated with B-cell chronic lymphocytic leukaemia. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jun 2012]

MC1R Gene

melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)

This intronless gene encodes the receptor protein for melanocyte-stimulating hormone (MSH). The encoded protein, a seven pass transmembrane G protein coupled receptor, controls melanogenesis. Two types of melanin exist: red pheomelanin and black eumelanin. Gene mutations that lead to a loss in function are associated with increased pheomelanin production, which leads to lighter skin and hair color. Eumelanin is photoprotective but pheomelanin may contribute to UV-induced skin damage by generating free radicals upon UV radiation. Binding of MSH to its receptor activates the receptor and stimulates eumelanin synthesis. This receptor is a major determining factor in sun sensitivity and is a genetic risk factor for melanoma and non-melanoma skin cancer. Over 30 variant alleles have been identified which correlate with skin and hair color, providing evidence that this gene is an important component in determining normal human pigment variation. [provided by RefSeq, Jul 2008]

INSRR Gene

insulin receptor-related receptor

GPR37 Gene

G protein-coupled receptor 37 (endothelin receptor type B-like)

This gene is a member of the G protein-coupled receptor family. The encoded protein contains seven transmembrane domains and is found in cell and endoplasmic reticulum membranes. G protein-coupled receptors are involved in translating outside signals into G protein mediated intracellular effects. This gene product interacts with Parkin and is involved in juvenile Parkinson disease. [provided by RefSeq, Oct 2012]

MTVR2 Gene

mouse mammary tumor virus receptor homolog 2

ITGA2 Gene

integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)

This gene encodes the alpha subunit of a transmembrane receptor for collagens and related proteins. The encoded protein forms a heterodimer with a beta subunit and mediates the adhesion of platelets and other cell types to the extracellular matrix. Loss of the encoded protein is associated with bleeding disorder platelet-type 9. Antibodies against this protein are found in several immune disorders, including neonatal alloimmune thrombocytopenia. This gene is located adjacent to a related alpha subunit gene. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

ITGA3 Gene

integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)

The protein encoded by this gene belongs to the family of integrins. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain, and function as cell surface adhesion molecules. This gene encodes alpha 3 subunit, which undergoes post-translational cleavage in the extracellular domain to yield disulfide-linked light and heavy chains that join with beta 1 subunit to form an integrin that interacts with many extracellular-matrix proteins. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Oct 2008]

ITGA4 Gene

integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)

The product of this gene belongs to the integrin alpha chain family of proteins. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This gene encodes an alpha 4 chain. Unlike other integrin alpha chains, alpha 4 neither contains an I-domain, nor undergoes disulfide-linked cleavage. Alpha 4 chain associates with either beta 1 chain or beta 7 chain. [provided by RefSeq, Jul 2008]

ITGA5 Gene

integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

The product of this gene belongs to the integrin alpha chain family. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This gene encodes the integrin alpha 5 chain. Alpha chain 5 undergoes post-translational cleavage in the extracellular domain to yield disulfide-linked light and heavy chains that join with beta 1 to form a fibronectin receptor. In addition to adhesion, integrins are known to participate in cell-surface mediated signalling. Integrin alpha 5 and integrin alpha V chains are produced by distinct genes. [provided by RefSeq, Jan 2015]

TRHR Gene

thyrotropin-releasing hormone receptor

This gene encodes a G protein-coupled receptor for thyrotropin-releasing hormone (TRH). Upon binding to TRH, this receptor activates the inositol phospholipid-calcium-protein kinase C transduction pathway. Mutations in this gene have been associated with generalized thyrotropin-releasing hormone resistance. [provided by RefSeq, Sep 2011]

ITGAX Gene

integrin, alpha X (complement component 3 receptor 4 subunit)

This gene encodes the integrin alpha X chain protein. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This protein combines with the beta 2 chain (ITGB2) to form a leukocyte-specific integrin referred to as inactivated-C3b (iC3b) receptor 4 (CR4). The alpha X beta 2 complex seems to overlap the properties of the alpha M beta 2 integrin in the adherence of neutrophils and monocytes to stimulated endothelium cells, and in the phagocytosis of complement coated particles. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

ITGAM Gene

integrin, alpha M (complement component 3 receptor 3 subunit)

This gene encodes the integrin alpha M chain. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This I-domain containing alpha integrin combines with the beta 2 chain (ITGB2) to form a leukocyte-specific integrin referred to as macrophage receptor 1 ('Mac-1'), or inactivated-C3b (iC3b) receptor 3 ('CR3'). The alpha M beta 2 integrin is important in the adherence of neutrophils and monocytes to stimulated endothelium, and also in the phagocytosis of complement coated particles. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

IGF2R Gene

insulin-like growth factor 2 receptor

This gene encodes a receptor for both insulin-like growth factor 2 and mannose 6-phosphate, although the binding sites for either are located on different segments of the receptor. This receptor functions in the intracellular trafficking of lysosomal enzymes, the activation of transforming growth factor beta, and the degradation of insulin-like growth factor 2. While the related mouse gene shows exclusive expression from the maternal allele, imprinting of the human gene appears to be polymorphic, with only a minority of individuals showing expression from the maternal allele. [provided by RefSeq, Apr 2013]

OR4A44P Gene

olfactory receptor, family 4, subfamily A, member 44 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421947 Gene

olfactory receptor, family 6, subfamily C, member 3 pseudogene

LOC100421945 Gene

olfactory receptor, family 6, subfamily C, member 1 pseudogene

LOC100421944 Gene

olfactory receptor, family 9, subfamily K, member 2 pseudogene

LOC100421942 Gene

olfactory receptor, family 6, subfamily C, member 2 pseudogene

LOC100421941 Gene

olfactory receptor, family 6, subfamily Y, member 1 pseudogene

OR2K2 Gene

olfactory receptor, family 2, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F14P Gene

olfactory receptor, family 4, subfamily F, member 14 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR1D1 Gene

nuclear receptor subfamily 1, group D, member 1

This gene encodes a transcription factor that is a member of the nuclear receptor subfamily 1. The encoded protein is a ligand-sensitive transcription factor that negatively regulates the expression of core clock proteins. In particular this protein represses the circadian clock transcription factor aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL). This protein may also be involved in regulating genes that function in metabolic, inflammatory and cardiovascular processes. [provided by RefSeq, Jan 2013]

NR1D2 Gene

nuclear receptor subfamily 1, group D, member 2

This gene encodes a member of the nuclear hormone receptor family, specifically the NR1 subfamily of receptors. The encoded protein functions as a transcriptional repressor and may play a role in circadian rhythms and carbohydrate and lipid metabolism. Alternatively spliced transcript variants have been described. [provided by RefSeq, Feb 2009]

OGFR Gene

opioid growth factor receptor

The protein encoded by this gene is a receptor for opioid growth factor (OGF), also known as [Met(5)]-enkephalin. OGF is a negative regulator of cell proliferation and tissue organization in a variety of processes. The encoded unbound receptor for OGF has been localized to the outer nuclear envelope, where it binds OGF and is translocated into the nucleus. The coding sequence of this gene contains a polymorphic region of 60 nt tandem imperfect repeat units. Several transcripts containing between zero and eight repeat units have been reported. [provided by RefSeq, Jul 2008]

VN2R10P Gene

vomeronasal 2 receptor 10 pseudogene

PTPN18 Gene

protein tyrosine phosphatase, non-receptor type 18 (brain-derived)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, the mitotic cycle, and oncogenic transformation. This PTP contains a PEST motif, which often serves as a protein-protein interaction domain, and may be related to protein intracellular half-live. This protein can differentially dephosphorylate autophosphorylated tyrosine kinases that are overexpressed in tumor tissues, and it appears to regulate HER2, a member of the epidermal growth factor receptor family of receptor tyrosine kinases. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2008]

PTPN13 Gene

protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP is a large intracellular protein. It has a catalytic PTP domain at its C-terminus and two major structural domains: a region with five PDZ domains and a FERM domain that binds to plasma membrane and cytoskeletal elements. This PTP was found to interact with, and dephosphorylate, Fas receptor and IkappaBalpha through the PDZ domains. This suggests it has a role in Fas mediated programmed cell death. This PTP was also shown to interact with GTPase-activating protein, and thus may function as a regulator of Rho signaling pathways. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Oct 2008]

PTPN12 Gene

protein tyrosine phosphatase, non-receptor type 12

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains a C-terminal PEST motif, which serves as a protein-protein interaction domain, and may regulate protein intracellular half-life. This PTP was found to bind and dephosphorylate the product of the oncogene c-ABL and thus may play a role in oncogenesis. This PTP was also shown to interact with, and dephosphorylate, various products related to cytoskeletal structure and cell adhesion, such as p130 (Cas), CAKbeta/PTK2B, PSTPIP1, and paxillin. This suggests it has a regulatory role in controlling cell shape and mobility. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Oct 2008]

PTPN11 Gene

protein tyrosine phosphatase, non-receptor type 11

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2012]

PTPN14 Gene

protein tyrosine phosphatase, non-receptor type 14

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal noncatalytic domain similar to that of band 4.1 superfamily cytoskeleton-associated proteins, which suggested the membrane or cytoskeleton localization of this protein. It appears to regulate lymphatic development in mammals, and a loss of function mutation has been found in a kindred with a lymphedema-choanal atresia. [provided by RefSeq, Sep 2010]

LPAR1 Gene

lysophosphatidic acid receptor 1

The integral membrane protein encoded by this gene is a lysophosphatidic acid (LPA) receptor from a group known as EDG receptors. These receptors are members of the G protein-coupled receptor superfamily. Utilized by LPA for cell signaling, EDG receptors mediate diverse biologic functions, including proliferation, platelet aggregation, smooth muscle contraction, inhibition of neuroblastoma cell differentiation, chemotaxis, and tumor cell invasion. Two transcript variants encoding the same protein have been identified for this gene [provided by RefSeq, Jul 2008]

OR52N4 Gene

olfactory receptor, family 52, subfamily N, member 4 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52N5 Gene

olfactory receptor, family 52, subfamily N, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52N2 Gene

olfactory receptor, family 52, subfamily N, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52N1 Gene

olfactory receptor, family 52, subfamily N, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5R1 Gene

olfactory receptor, family 5, subfamily R, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100420096 Gene

IGF-like family receptor 1 pseudogene

LOC100533655 Gene

aryl hydrocarbon receptor pseudogene

OR1S1 Gene

olfactory receptor, family 1, subfamily S, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1S2 Gene

olfactory receptor, family 1, subfamily S, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCER1G Gene

Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide

The high affinity IgE receptor is a key molecule involved in allergic reactions. It is a tetramer composed of 1 alpha, 1 beta, and 2 gamma chains. The gamma chains are also subunits of other Fc receptors. [provided by RefSeq, Jul 2008]

FCER1A Gene

Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide

The immunoglobulin epsilon receptor (IgE receptor) is the initiator of the allergic response. When two or more high-affinity IgE receptors are brought together by allergen-bound IgE molecules, mediators such as histamine that are responsible for allergy symptoms are released. This receptor is comprised of an alpha subunit, a beta subunit, and two gamma subunits. The protein encoded by this gene represents the alpha subunit. [provided by RefSeq, Aug 2011]

LOC100422128 Gene

olfactory receptor, family 52, subfamily H, member 1 pseudogene

LOC100422129 Gene

olfactory receptor, family 56, subfamily A, member 1 pseudogene

LOC100422125 Gene

olfactory receptor, family 51, subfamily B, member 2 pseudogene

TRAV23DV6 Gene

T cell receptor alpha variable 23/delta variable 6

OR4D12P Gene

olfactory receptor, family 4, subfamily D, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R20P Gene

vomeronasal 1 receptor 20 pseudogene

LRIF1 Gene

ligand dependent nuclear receptor interacting factor 1

LOC100421595 Gene

thyroid hormone receptor associated protein 3 pseudogene

VN1R94P Gene

vomeronasal 1 receptor 94 pseudogene

MARCO Gene

macrophage receptor with collagenous structure

The protein encoded by this gene is a member of the class A scavenger receptor family and is part of the innate antimicrobial immune system. The protein may bind both Gram-negative and Gram-positive bacteria via an extracellular, C-terminal, scavenger receptor cysteine-rich (SRCR) domain. In addition to short cytoplasmic and transmembrane domains, there is an extracellular spacer domain and a long, extracellular collagenous domain. The protein may form a trimeric molecule by the association of the collagenous domains of three identical polypeptide chains. [provided by RefSeq, Jul 2008]

OR7E96P Gene

olfactory receptor, family 7, subfamily E, member 96 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPY2R Gene

neuropeptide Y receptor Y2

IL18RAP Gene

interleukin 18 receptor accessory protein

The protein encoded by this gene is an accessory subunit of the heterodimeric receptor for interleukin 18 (IL18), a proinflammatory cytokine involved in inducing cell-mediated immunity. This protein enhances the IL18-binding activity of the IL18 receptor and plays a role in signaling by IL18. Mutations in this gene are associated with Crohn's disease and inflammatory bowel disease, and susceptibility to celiac disease and leprosy. Alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Feb 2014]

TRBJ2-4 Gene

T cell receptor beta joining 2-4

TRBJ2-5 Gene

T cell receptor beta joining 2-5

TRBJ2-6 Gene

T cell receptor beta joining 2-6

TRBJ2-7 Gene

T cell receptor beta joining 2-7

TRBJ2-1 Gene

T cell receptor beta joining 2-1

TRBJ2-2 Gene

T cell receptor beta joining 2-2

TRBJ2-3 Gene

T cell receptor beta joining 2-3

OR4P1P Gene

olfactory receptor, family 4, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105379705 Gene

olfactory receptor 4F6-like

OR4C14P Gene

olfactory receptor, family 4, subfamily C, member 14 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E157P Gene

olfactory receptor, family 7, subfamily E, member 157 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6V1 Gene

olfactory receptor, family 6, subfamily V, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R106P Gene

vomeronasal 1 receptor 106 pseudogene

CNR1 Gene

cannabinoid receptor 1 (brain)

This gene encodes one of two cannabinoid receptors. The cannabinoids, principally delta-9-tetrahydrocannabinol and synthetic analogs, are psychoactive ingredients of marijuana. The cannabinoid receptors are members of the guanine-nucleotide-binding protein (G-protein) coupled receptor family, which inhibit adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. The two receptors have been found to be involved in the cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. Multiple transcript variants encoding two different protein isoforms have been described for this gene. [provided by RefSeq, May 2009]

CNR2 Gene

cannabinoid receptor 2 (macrophage)

The cannabinoid delta-9-tetrahydrocannabinol is the principal psychoactive ingredient of marijuana. The proteins encoded by this gene and the cannabinoid receptor 1 (brain) (CNR1) gene have the characteristics of a guanine nucleotide-binding protein (G-protein)-coupled receptor for cannabinoids. They inhibit adenylate cyclase activity in a dose-dependent, stereoselective, and pertussis toxin-sensitive manner. These proteins have been found to be involved in the cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. The cannabinoid receptors are members of family 1 of the G-protein-coupled receptors. [provided by RefSeq, Jul 2008]

OR2A15P Gene

olfactory receptor, family 2, subfamily A, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV20-1 Gene

T cell receptor beta variable 20-1

LOC100421948 Gene

olfactory receptor, family 6, subfamily C, member 2 pseudogene

ADGRA1-AS1 Gene

adhesion G protein-coupled receptor A1 antisense RNA 1

LOC105369264 Gene

tyrosine-protein phosphatase non-receptor type 20

CNRIP1 Gene

cannabinoid receptor interacting protein 1

This gene encodes a protein that interacts with the C-terminal tail of cannabinoid receptor 1. Two transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2013]

OR2T34 Gene

olfactory receptor, family 2, subfamily T, member 34

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T35 Gene

olfactory receptor, family 2, subfamily T, member 35

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T33 Gene

olfactory receptor, family 2, subfamily T, member 33

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R38P Gene

vomeronasal 1 receptor 38 pseudogene

OR5P1P Gene

olfactory receptor, family 5, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRID2IP Gene

glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein

Glutamate receptor delta-2 (GRID2; MIM 602368) is predominantly expressed at parallel fiber-Purkinje cell postsynapses and plays crucial roles in synaptogenesis and synaptic plasticity. GRID2IP1 interacts with GRID2 and may control GRID2 signaling in Purkinje cells (Matsuda et al., 2006 [PubMed 16835239]).[supplied by OMIM, Mar 2008]

5-HT3C2 Gene

5-hydroxytryptamine (serotonin) receptor 3, family member E pseudogene

OR4A47 Gene

olfactory receptor, family 4, subfamily A, member 47

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GABBR1 Gene

gamma-aminobutyric acid (GABA) B receptor, 1

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its effects through ionotropic [GABA(A/C)] receptors, to produce fast synaptic inhibition, and metabotropic [GABA(B)] receptors, to produce slow, prolonged inhibitory signals. The GABA(B) receptor consists of a heterodimer of two related 7-transmembrane receptors, GABA(B) receptor 1 and GABA(B) receptor 2. The GABA(B) receptor 1 gene is mapped to chromosome 6p21.3 within the HLA class I region close to the HLA-F gene. Susceptibility loci for multiple sclerosis, epilepsy, and schizophrenia have also been mapped in this region. Alternative splicing of this gene generates multiple transcript variants. [provided by RefSeq, Jun 2009]

GPRC6A Gene

G protein-coupled receptor, class C, group 6, member A

Members of family C of the G protein-coupled receptor (GPCR) superfamily, such as GPRC6A, are characterized by an evolutionarily conserved amino acid-sensing motif linked to an intramembranous 7-transmembrane loop region. Several members of GPCR family C, including GPRC6A, also have a long N-terminal domain (summary by Pi et al., 2005 [PubMed 16199532]).[supplied by OMIM, Nov 2010]

OR2AS2P Gene

olfactory receptor, family 2, subfamily AS, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AHRR Gene

aryl-hydrocarbon receptor repressor

The protein encoded by this gene participates in the aryl hydrocarbon receptor (AhR) signaling cascade, which mediates dioxin toxicity, and is involved in regulation of cell growth and differentiation. It functions as a feedback modulator by repressing AhR-dependent gene expression. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jun 2011]

LOC102725029 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

VN1R65P Gene

vomeronasal 1 receptor 65 pseudogene

LOC100418679 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418678 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

OR8J2 Gene

olfactory receptor, family 8, subfamily J, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8J3 Gene

olfactory receptor, family 8, subfamily J, member 3

LOC100418677 Gene

olfactory receptor, family 2, subfamily G, member 6 pseudogene

OR8J1 Gene

olfactory receptor, family 8, subfamily J, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418671 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418670 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

LOC100418673 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

LOC100418672 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

OR2C3 Gene

olfactory receptor, family 2, subfamily C, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2C1 Gene

olfactory receptor, family 2, subfamily C, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51A2 Gene

olfactory receptor, family 51, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E105P Gene

olfactory receptor, family 7, subfamily E, member 105 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R18P Gene

vomeronasal 2 receptor 18 pseudogene

VN1R66P Gene

vomeronasal 1 receptor 66 pseudogene

OR7E53P Gene

olfactory receptor, family 7, subfamily E, member 53 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52E7P Gene

olfactory receptor, family 52, subfamily E, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR146 Gene

G protein-coupled receptor 146

GPR142 Gene

G protein-coupled receptor 142

GPR142 is a member of the rhodopsin family of G protein-coupled receptors (GPRs) (Fredriksson et al., 2003 [PubMed 14623098]).[supplied by OMIM, Mar 2008]

GPR143 Gene

G protein-coupled receptor 143

This gene encodes a protein that binds to heterotrimeric G proteins and is targeted to melanosomes in pigment cells. This protein is thought to be involved in intracellular signal transduction mechanisms. Mutations in this gene cause ocular albinism type 1, also referred to as Nettleship-Falls type ocular albinism, a severe visual disorder. A related pseudogene has been identified on chromosome Y. [provided by RefSeq, Dec 2009]

GPR148 Gene

G protein-coupled receptor 148

GPR149 Gene

G protein-coupled receptor 149

RIPK1 Gene

receptor (TNFRSF)-interacting serine-threonine kinase 1

RIPK3 Gene

receptor-interacting serine-threonine kinase 3

The product of this gene is a member of the receptor-interacting protein (RIP) family of serine/threonine protein kinases, and contains a C-terminal domain unique from other RIP family members. The encoded protein is predominantly localized to the cytoplasm, and can undergo nucleocytoplasmic shuttling dependent on novel nuclear localization and export signals. It is a component of the tumor necrosis factor (TNF) receptor-I signaling complex, and can induce apoptosis and weakly activate the NF-kappaB transcription factor. [provided by RefSeq, Jul 2008]

RIPK2 Gene

receptor-interacting serine-threonine kinase 2

This gene encodes a member of the receptor-interacting protein (RIP) family of serine/threonine protein kinases. The encoded protein contains a C-terminal caspase activation and recruitment domain (CARD), and is a component of signaling complexes in both the innate and adaptive immune pathways. It is a potent activator of NF-kappaB and inducer of apoptosis in response to various stimuli. [provided by RefSeq, Jul 2008]

OR13C1P Gene

olfactory receptor, family 13, subfamily C, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NGFRAP1 Gene

nerve growth factor receptor (TNFRSF16) associated protein 1

GPR165P Gene

G protein-coupled receptor 165 pseudogene

OR5J2 Gene

olfactory receptor, family 5, subfamily J, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR152 Gene

G protein-coupled receptor 152

GPR150 Gene

G protein-coupled receptor 150

GPR157 Gene

G protein-coupled receptor 157

TRAJ32 Gene

T cell receptor alpha joining 32

NRBF2P5 Gene

nuclear receptor binding factor 2 pseudogene 5

LOC102724726 Gene

coxsackievirus and adenovirus receptor-like

OR4L1 Gene

olfactory receptor, family 4, subfamily L, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRL4 Gene

adhesion G protein-coupled receptor L4

ADGRL2 Gene

adhesion G protein-coupled receptor L2

This gene encodes a member of the latrophilin subfamily of G-protein coupled receptors. The encoded protein participates in the regulation of exocytosis. The proprotein is thought to be further cleaved within a cysteine-rich G-protein-coupled receptor proteolysis site into two chains that are non-covalently bound at the cell membrane. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

ADGRL3 Gene

adhesion G protein-coupled receptor L3

This gene encodes a member of the latrophilin subfamily of G-protein coupled receptors (GPCR). Latrophilins may function in both cell adhesion and signal transduction. In experiments with non-human species, endogenous proteolytic cleavage within a cysteine-rich GPS (G-protein-coupled-receptor proteolysis site) domain resulted in two subunits (a large extracellular N-terminal cell adhesion subunit and a subunit with substantial similarity to the secretin/calcitonin family of GPCRs) being non-covalently bound at the cell membrane. [provided by RefSeq, Jul 2008]

ADGRL1 Gene

adhesion G protein-coupled receptor L1

This gene encodes a member of the latrophilin subfamily of G-protein coupled receptors (GPCR). Latrophilins may function in both cell adhesion and signal transduction. In experiments with non-human species, endogenous proteolytic cleavage within a cysteine-rich GPS (G-protein-coupled-receptor proteolysis site) domain resulted in two subunits (a large extracellular N-terminal cell adhesion subunit and a subunit with substantial similarity to the secretin/calcitonin family of GPCRs) being non-covalently bound at the cell membrane. Latrophilin-1 has been shown to recruit the neurotoxin from black widow spider venom, alpha-latrotoxin, to the synapse plasma membrane. Alternative splicing results in multiple variants encoding distinct isoforms.[provided by RefSeq, Oct 2008]

PPFIA4 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 4

PPFIA4, or liprin-alpha-4, belongs to the liprin-alpha gene family. See liprin-alpha-1 (LIP1, or PPFIA1; MIM 611054) for background on liprins.[supplied by OMIM, Mar 2008]

OR11K2P Gene

olfactory receptor, family 11, subfamily K, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10Q2P Gene

olfactory receptor, family 10, subfamily Q, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC101929104 Gene

mitochondrial import receptor subunit TOM22 homolog pseudogene

OR7A18P Gene

olfactory receptor, family 7, subfamily A, member 18 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC101929818 Gene

killer cell immunoglobulin-like receptor 3DL1

LOC101929815 Gene

D(1B) dopamine receptor-like

OR5J7P Gene

olfactory receptor, family 5, subfamily J, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PAQR9 Gene

progestin and adipoQ receptor family member IX

OR51H2P Gene

olfactory receptor, family 51, subfamily H, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422537 Gene

signal sequence receptor, gamma (translocon-associated protein gamma) pseudogene

OR10J6P Gene

olfactory receptor, family 10, subfamily J, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NMBR Gene

neuromedin B receptor

Neuromedin B receptor binds neuromedin B, a potent mitogen and growth factor for normal and neoplastic lung and for gastrointestinal epithelial tissue. [provided by RefSeq, Jul 2008]

OR6M2P Gene

olfactory receptor, family 6, subfamily M, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ROS1 Gene

ROS proto-oncogene 1 , receptor tyrosine kinase

This proto-oncogene, highly-expressed in a variety of tumor cell lines, belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. The protein encoded by this gene is a type I integral membrane protein with tyrosine kinase activity. The protein may function as a growth or differentiation factor receptor. [provided by RefSeq, Jul 2008]

GPR89B Gene

G protein-coupled receptor 89B

GPR89A Gene

G protein-coupled receptor 89A

GPR89A is a nearly identical copy of the GPR89B gene (MIM 612806).[supplied by OMIM, Jun 2009]

ADIPOR2 Gene

adiponectin receptor 2

The adiponectin receptors, ADIPOR1 (MIM 607945) and ADIPOR2, serve as receptors for globular and full-length adiponectin (MIM 605441) and mediate increased AMPK (see MIM 602739) and PPAR-alpha (PPARA; MIM 170998) ligand activities, as well as fatty acid oxidation and glucose uptake by adiponectin (Yamauchi et al., 2003 [PubMed 12802337]).[supplied by OMIM, Mar 2008]

ADIPOR1 Gene

adiponectin receptor 1

This gene encodes a protein which acts as a receptor for adiponectin, a hormone secreted by adipocytes which regulates fatty acid catabolism and glucose levels. Binding of adiponectin to the encoded protein results in activation of an AMP-activated kinase signaling pathway which affects levels of fatty acid oxidation and insulin sensitivity. A pseudogene of this gene is located on chromosome 14. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Mar 2014]

OR7E47P Gene

olfactory receptor, family 7, subfamily E, member 47 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R105P Gene

vomeronasal 1 receptor 105 pseudogene

NPTXR Gene

neuronal pentraxin receptor

This gene encodes a protein similar to the rat neuronal pentraxin receptor. The rat pentraxin receptor is an integral membrane protein that is thought to mediate neuronal uptake of the snake venom toxin, taipoxin, and its transport into the synapses. Studies in rat indicate that translation of this mRNA initiates at a non-AUG (CUG) codon. This may also be true for mouse and human, based on strong sequence conservation amongst these species. [provided by RefSeq, Jul 2008]

ESRRAP2 Gene

estrogen-related receptor alpha pseudogene 2

ESRRAP1 Gene

estrogen-related receptor alpha pseudogene 1

LDLRAD1 Gene

low density lipoprotein receptor class A domain containing 1

LDLRAD2 Gene

low density lipoprotein receptor class A domain containing 2

LDLRAD3 Gene

low density lipoprotein receptor class A domain containing 3

CRCP Gene

CGRP receptor component

This gene encodes a membrane protein that functions as part of a receptor complex for a small neuropeptide that increases intracellular cAMP levels. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

OR9K1P Gene

olfactory receptor, family 9, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C6P Gene

olfactory receptor, family 13, subfamily C, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13G1 Gene

olfactory receptor, family 13, subfamily G, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105379539 Gene

tyrosine-protein phosphatase non-receptor type 23-like

GNRHR2P1 Gene

gonadotropin-releasing hormone (type 2) receptor 2 pseudogene 1

IRAK1BP1 Gene

interleukin-1 receptor-associated kinase 1 binding protein 1

OR4D7P Gene

olfactory receptor, family 4, subfamily D, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11G1P Gene

olfactory receptor, family 11, subfamily G, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52P2P Gene

olfactory receptor, family 52, subfamily P, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KIR3DX1 Gene

killer cell immunoglobulin-like receptor, three domains, X1

OR10S1 Gene

olfactory receptor, family 10, subfamily S, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52X1P Gene

olfactory receptor, family 52, subfamily X, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B3P Gene

olfactory receptor, family 51, subfamily B, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51A10P Gene

olfactory receptor, family 51, subfamily A, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100996333 Gene

G protein-coupled receptor 125 pseudogene

CSF1R Gene

colony stimulating factor 1 receptor

The protein encoded by this gene is the receptor for colony stimulating factor 1, a cytokine which controls the production, differentiation, and function of macrophages. This receptor mediates most if not all of the biological effects of this cytokine. Ligand binding activates the receptor kinase through a process of oligomerization and transphosphorylation. The encoded protein is a tyrosine kinase transmembrane receptor and member of the CSF1/PDGF receptor family of tyrosine-protein kinases. Mutations in this gene have been associated with a predisposition to myeloid malignancy. The first intron of this gene contains a transcriptionally inactive ribosomal protein L7 processed pseudogene oriented in the opposite direction. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

TRGJ2 Gene

T cell receptor gamma joining 2

TRGJ1 Gene

T cell receptor gamma joining 1

TRGJP Gene

T cell receptor gamma joining P

OR7A5 Gene

olfactory receptor, family 7, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R82P Gene

vomeronasal 1 receptor 82 pseudogene

VN1R17P Gene

vomeronasal 1 receptor 17 pseudogene

GCGR Gene

glucagon receptor

The protein encoded by this gene is a glucagon receptor that is important in controlling blood glucose levels. Defects in this gene are a cause of non-insulin-dependent diabetes mellitus (NIDDM).[provided by RefSeq, Jan 2010]

OR7E84P Gene

olfactory receptor, family 7, subfamily E, member 84 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV6-8 Gene

T cell receptor beta variable 6-8

TRBV6-9 Gene

T cell receptor beta variable 6-9

TRBV6-5 Gene

T cell receptor beta variable 6-5

TRBV6-6 Gene

T cell receptor beta variable 6-6

TRBV6-7 Gene

T cell receptor beta variable 6-7 (non-functional)

TRBV6-2 Gene

T cell receptor beta variable 6-2 (gene/pseudogene)

TRBV6-3 Gene

T cell receptor beta variable 6-3

OR7E15P Gene

olfactory receptor, family 7, subfamily E, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

THRB Gene

thyroid hormone receptor, beta

The protein encoded by this gene is a nuclear hormone receptor for triiodothyronine. It is one of the several receptors for thyroid hormone, and has been shown to mediate the biological activities of thyroid hormone. Knockout studies in mice suggest that the different receptors, while having certain extent of redundancy, may mediate different functions of thyroid hormone. Mutations in this gene are known to be a cause of generalized thyroid hormone resistance (GTHR), a syndrome characterized by goiter and high levels of circulating thyroid hormone (T3-T4), with normal or slightly elevated thyroid stimulating hormone (TSH). Several alternatively spliced transcript variants encoding the same protein have been observed for this gene. [provided by RefSeq, Jul 2008]

DCC Gene

DCC netrin 1 receptor

This gene encodes a netrin 1 receptor. The transmembrane protein is a member of the immunoglobulin superfamily of cell adhesion molecules, and mediates axon guidance of neuronal growth cones towards sources of netrin 1 ligand. The cytoplasmic tail interacts with the tyrosine kinases Src and focal adhesion kinase (FAK, also known as PTK2) to mediate axon attraction. The protein partially localizes to lipid rafts, and induces apoptosis in the absence of ligand. The protein functions as a tumor suppressor, and is frequently mutated or downregulated in colorectal cancer and esophageal carcinoma. [provided by RefSeq, Oct 2009]

THRA Gene

thyroid hormone receptor, alpha

The protein encoded by this gene is a nuclear hormone receptor for triiodothyronine. It is one of the several receptors for thyroid hormone, and has been shown to mediate the biological activities of thyroid hormone. Knockout studies in mice suggest that the different receptors, while having certain extent of redundancy, may mediate different functions of thyroid hormone. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

LOC105378176 Gene

proline-rich receptor-like protein kinase PERK2

VN1R78P Gene

vomeronasal 1 receptor 78 pseudogene

OR4F29 Gene

olfactory receptor, family 4, subfamily F, member 29

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F21 Gene

olfactory receptor, family 4, subfamily F, member 21

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBC1 Gene

T cell receptor beta constant 1

TRBC2 Gene

T cell receptor beta constant 2

OR8B2 Gene

olfactory receptor, family 8, subfamily B, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B3 Gene

olfactory receptor, family 8, subfamily B, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B4 Gene

olfactory receptor, family 8, subfamily B, member 4 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B8 Gene

olfactory receptor, family 8, subfamily B, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422142 Gene

olfactory receptor, family 5, subfamily B, member 12 pseudogene

LOC100422140 Gene

olfactory receptor, family 2, subfamily A, member 42 pseudogene

LOC100422141 Gene

olfactory receptor, family 10, subfamily Q, member 1 pseudogene

LOC100422145 Gene

olfactory receptor, family 2, subfamily AT, member 4 pseudogene

OR4F2P Gene

olfactory receptor, family 4, subfamily F, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422148 Gene

olfactory receptor, family 52, subfamily B, member 4 pseudogene

LOC100422149 Gene

olfactory receptor, family 51, subfamily G, member 2 pseudogene

RYK Gene

receptor-like tyrosine kinase

The protein encoded by this gene is an atypical member of the family of growth factor receptor protein tyrosine kinases, differing from other members at a number of conserved residues in the activation and nucleotide binding domains. This gene product belongs to a subfamily whose members do not appear to be regulated by phosphorylation in the activation segment. It has been suggested that mediation of biological activity by recruitment of a signaling-competent auxiliary protein may occur through an as yet uncharacterized mechanism. The encoded protein has a leucine-rich extracellular domain with a WIF-type Wnt binding region, a single transmembrane domain, and an intracellular tyrosine kinase domain. This protein is involved in stimulating Wnt signaling pathways such as the regulation of axon pathfinding. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Feb 2012]

VN1R37P Gene

vomeronasal 1 receptor 37 pseudogene

LOC100288484 Gene

formyl peptide receptor 1 pseudogene

TRBV21-1 Gene

T cell receptor beta variable 21-1 (pseudogene)

NCOA2 Gene

nuclear receptor coactivator 2

The NCOA2 gene encodes nuclear receptor coactivator 2, which aids in the function of nuclear hormone receptors. Nuclear hormone receptors are conditional transcription factors that play important roles in various aspects of cell growth, development, and homeostasis by controlling expression of specific genes. Members of the nuclear hormone receptor superfamily, which includes the 5 steroid receptors and class II nuclear receptors (see below), are structurally characterized by 3 distinct domains: an N-terminal transcriptional activation domain, a central DNA-binding domain, and a C-terminal hormone-binding domain. Before the binding of hormone, steroid receptors, which are sometimes called class I of the nuclear hormone receptor family, remain inactive in a complex with heat-shock protein-90 (MIM 140571) and other stress family proteins. Binding of hormone induces critical conformational changes in steroid receptors that cause them to dissociate from the inhibitory complex, bind as homodimers to specific DNA enhancer elements associated with target genes, and modulate that gene's transcription. After binding to enhancer elements, transcription factors require transcriptional coactivator proteins to mediate their stimulation of transcription initiation (Hong et al., 1997 [PubMed 9111344]).[supplied by OMIM, Nov 2010]

NCOA3 Gene

nuclear receptor coactivator 3

The protein encoded by this gene is a nuclear receptor coactivator that interacts with nuclear hormone receptors to enhance their transcriptional activator functions. The encoded protein has histone acetyltransferase activity and recruits p300/CBP-associated factor and CREB binding protein as part of a multisubunit coactivation complex. This protein is initially found in the cytoplasm but is translocated into the nucleus upon phosphorylation. Several transcript variants encoding different isoforms have been found for this gene. In addition, a polymorphic repeat region is found in the C-terminus of the encoded protein. [provided by RefSeq, Mar 2010]

NCOA1 Gene

nuclear receptor coactivator 1

The protein encoded by this gene acts as a transcriptional coactivator for steroid and nuclear hormone receptors. It is a member of the p160/steroid receptor coactivator (SRC) family and like other family members has histone acetyltransferase activity and contains a nuclear localization signal, as well as bHLH and PAS domains. The product of this gene binds nuclear receptors directly and stimulates the transcriptional activities in a hormone-dependent fashion. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

NCOA6 Gene

nuclear receptor coactivator 6

The protein encoded by this gene is a transcriptional coactivator that can interact with nuclear hormone receptors to enhance their transcriptional activator functions. This protein has been shown to be involved in the hormone-dependent coactivation of several receptors, including prostanoid, retinoid, vitamin D3, thyroid hormone, and steroid receptors. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jun 2011]

NCOA7 Gene

nuclear receptor coactivator 7

NCOA4 Gene

nuclear receptor coactivator 4

This gene encodes an androgen receptor coactivator. The encoded protein interacts with the androgen receptor in a ligand-dependent manner to enhance its transcriptional activity. Chromosomal translocations between this gene and the ret tyrosine kinase gene, also located on chromosome 10, have been associated with papillary thyroid carcinoma. Alternatively spliced transcript variants have been described. Pseudogenes are present on chromosomes 4, 5, 10, and 14. [provided by RefSeq, Feb 2009]

NCOA5 Gene

nuclear receptor coactivator 5

This gene encodes a coregulator for the alpha and beta estrogen receptors and the orphan nuclear receptor NR1D2. The protein localizes to the nucleus, and is thought to have both coactivator and corepressor functions. Its interaction with nuclear receptors is independent of the AF2 domain on the receptors, which is known to regulate interaction with other coreceptors. Two alternatively spliced transcript variants for this gene have been described. However, the full length nature of one of the variants has not been determined. [provided by RefSeq, Jul 2008]

VN1R81P Gene

vomeronasal 1 receptor 81 pseudogene

NCR3 Gene

natural cytotoxicity triggering receptor 3

The protein encoded by this gene is a natural cytotoxicity receptor (NCR) that may aid NK cells in the lysis of tumor cells. The encoded protein interacts with CD3-zeta (CD247), a T-cell receptor. A single nucleotide polymorphism in the 5' untranslated region of this gene has been associated with mild malaria suceptibility. Three transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, May 2010]

NCR1 Gene

natural cytotoxicity triggering receptor 1

PGR Gene

progesterone receptor

This gene encodes a member of the steroid receptor superfamily. The encoded protein mediates the physiological effects of progesterone, which plays a central role in reproductive events associated with the establishment and maintenance of pregnancy. This gene uses two distinct promotors and translation start sites in the first exon to produce two isoforms, A and B. The two isoforms are identical except for the additional 165 amino acids found in the N-terminus of isoform B and mediate their own response genes and physiologic effects with little overlap. [provided by RefSeq, Jan 2011]

IZUMO1R Gene

IZUMO1 receptor, JUNO

OR10G5P Gene

olfactory receptor, family 10, subfamily G, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

THRAP3P1 Gene

thyroid hormone receptor associated protein 3 pseudogene 1

OR5B3 Gene

olfactory receptor, family 5, subfamily B, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5B2 Gene

olfactory receptor, family 5, subfamily B, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D1 Gene

olfactory receptor, family 4, subfamily D, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D2 Gene

olfactory receptor, family 4, subfamily D, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D5 Gene

olfactory receptor, family 4, subfamily D, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D6 Gene

olfactory receptor, family 4, subfamily D, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRD2 Gene

adhesion G protein-coupled receptor D2

ADGRD1 Gene

adhesion G protein-coupled receptor D1

The adhesion G-protein-coupled receptors (GPCRs), including GPR133, are membrane-bound proteins with long N termini containing multiple domains. GPCRs, or GPRs, contain 7 transmembrane domains and transduce extracellular signals through heterotrimeric G proteins (summary by Bjarnadottir et al., 2004 [PubMed 15203201]).[supplied by OMIM, Nov 2010]

OR8B6P Gene

olfactory receptor, family 8, subfamily B, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R63P Gene

taste receptor, type 2, member 63, pseudogene

OR4K8P Gene

olfactory receptor, family 4, subfamily K, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR65 Gene

G protein-coupled receptor 65

GPR62 Gene

G protein-coupled receptor 62

GPR63 Gene

G protein-coupled receptor 63

This gene encodes a G protein-coupled receptor. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Dec 2011]

GPR61 Gene

G protein-coupled receptor 61

This gene belongs to the G-protein coupled receptor 1 family. G protein-coupled receptors contain 7 transmembrane domains and transduce extracellular signals through heterotrimeric G proteins. The protein encoded by this gene is most closely related to biogenic amine receptors. [provided by RefSeq, Jul 2008]

GPR68 Gene

G protein-coupled receptor 68

LOC100310835 Gene

thyroid hormone receptor interactor 13 pseudogene

OR14J1 Gene

olfactory receptor, family 14, subfamily J, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421623 Gene

zona pellucida glycoprotein 3 (sperm receptor) pseudogene

NR5A2 Gene

nuclear receptor subfamily 5, group A, member 2

NR5A1 Gene

nuclear receptor subfamily 5, group A, member 1

The protein encoded by this gene is a transcriptional activator involved in sex determination. The encoded protein binds DNA as a monomer. Defects in this gene are a cause of XY sex reversal with or without adrenal failure as well as adrenocortical insufficiency without ovarian defect. [provided by RefSeq, Jul 2008]

CXADRP3 Gene

coxsackie virus and adenovirus receptor pseudogene 3

OR5BD1P Gene

olfactory receptor, family 5, subfamily BD, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E115P Gene

olfactory receptor, family 7, subfamily E, member 115 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100288724 Gene

transient receptor potential cation channel, subfamily C, member 6 pseudogene

NR6A1 Gene

nuclear receptor subfamily 6, group A, member 1

This gene encodes an orphan nuclear receptor which is a member of the nuclear hormone receptor family. Its expression pattern suggests that it may be involved in neurogenesis and germ cell development. The protein can homodimerize and bind DNA, but in vivo targets have not been identified. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jun 2013]

OR2A3P Gene

olfactory receptor, family 2, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2B8P Gene

olfactory receptor, family 2, subfamily B, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E148P Gene

olfactory receptor, family 7, subfamily E, member 148 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52B3P Gene

olfactory receptor, family 52, subfamily B, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R99P Gene

vomeronasal 1 receptor 99 pseudogene

OR1J4 Gene

olfactory receptor, family 1, subfamily J, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

STRAP Gene

serine/threonine kinase receptor associated protein

TRBV23OR9-2 Gene

T cell receptor beta variable 23/OR9-2 (non-functional)

EPOR Gene

erythropoietin receptor

This gene encodes the erythropoietin receptor which is a member of the cytokine receptor family. Upon erythropoietin binding, this receptor activates Jak2 tyrosine kinase which activates different intracellular pathways including: Ras/MAP kinase, phosphatidylinositol 3-kinase and STAT transcription factors. The stimulated erythropoietin receptor appears to have a role in erythroid cell survival. Defects in the erythropoietin receptor may produce erythroleukemia and familial erythrocytosis. Dysregulation of this gene may affect the growth of certain tumors. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2010]

OR2M2 Gene

olfactory receptor, family 2, subfamily M, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCRL1 Gene

Fc receptor-like 1

This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein contains three extracellular C2-like immunoglobulin domains, a transmembrane domain and a cytoplasmic domain with two immunoreceptor-tyrosine activation motifs. This protein may play a role in the regulation of cancer cell growth. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2009]

FCRL2 Gene

Fc receptor-like 2

This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein has four extracellular C2-type immunoglobulin domains, a transmembrane domain and a cytoplasmic domain that contains one immunoreceptor-tyrosine activation motif and two immunoreceptor-tyrosine inhibitory motifs. This protein may be a prognostic marker for chronic lymphocytic leukemia. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Apr 2009]

FCRL3 Gene

Fc receptor-like 3

This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein contains immunoreceptor-tyrosine activation motifs and immunoreceptor-tyrosine inhibitory motifs in its cytoplasmic domain and may play a role in regulation of the immune system. Mutations in this gene have been associated with rheumatoid arthritis, autoimmune thyroid disease, and systemic lupus erythematosus. [provided by RefSeq, Jul 2008]

FCRL4 Gene

Fc receptor-like 4

This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein has four extracellular C2-type immunoglobulin domains, a transmembrane domain and a cytoplasmic domain that contains three immune-receptor tyrosine-based inhibitory motifs. This protein may play a role in the function of memory B-cells in the epithelia. Aberrations in the chromosomal region encoding this gene are associated with non-Hodgkin lymphoma and multiple myeloma. [provided by RefSeq, Apr 2009]

FCRL6 Gene

Fc receptor-like 6

FCRLA Gene

Fc receptor-like A

This gene encodes a protein similar to receptors for the Fc fragment of gamma immunoglobulin (IgG). These receptors, referred to as FCGRs, mediate the destruction of IgG-coated antigens and of cells induced by antibodies. This encoded protein is selectively expressed in B cells, and may be involved in their development. This protein may also be involved in the development of lymphomas. Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene. [provided by RefSeq, Aug 2011]

FCRLB Gene

Fc receptor-like B

FCRL2 belongs to the Fc receptor family. Fc receptors are involved in phagocytosis, antibody-dependent cell cytotoxicity, immediate hypersensitivity, and transcytosis of immunoglobulins via their ability to bind immunoglobulin (Ig) constant regions (Chikaev et al., 2005 [PubMed 15676285]).[supplied by OMIM, Mar 2008]

HTR1D Gene

5-hydroxytryptamine (serotonin) receptor 1D, G protein-coupled

HTR1B Gene

5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled

The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) exerts a wide variety of physiologic functions through a multiplicity of receptors and may be involved in human neuropsychiatric disorders such as anxiety, depression, or migraine. These receptors consist of several main groups subdivided into several distinct subtypes on the basis of their pharmacologic characteristics, coupling to intracellular second messengers, and distribution within the nervous system (Zifa and Fillion, 1992 [PubMed 1359584]). The serotonergic receptors belong to the multigene family of receptors coupled to guanine nucleotide-binding proteins.[supplied by OMIM, Oct 2009]

AGER Gene

advanced glycosylation end product-specific receptor

The advanced glycosylation end product (AGE) receptor encoded by this gene is a member of the immunoglobulin superfamily of cell surface receptors. It is a multiligand receptor, and besides AGE, interacts with other molecules implicated in homeostasis, development, and inflammation, and certain diseases, such as diabetes and Alzheimer's disease. Many alternatively spliced transcript variants encoding different isoforms, as well as non-protein-coding variants, have been described for this gene (PMID:18089847). [provided by RefSeq, May 2011]

OR5H4P Gene

olfactory receptor, family 5, subfamily H, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GFRAL Gene

GDNF family receptor alpha like

TREML3P Gene

triggering receptor expressed on myeloid cells-like 3, pseudogene

TREML3 is located in a gene cluster on chromosome 6 with the single Ig variable (IgV) domain activating receptors TREM1 (MIM 605085) and TREM2 (MIM 605086), but it has distinct structural and functional properties (Allcock et al., 2003 [PubMed 12645956]).[supplied by OMIM, Mar 2008]

GRIA4 Gene

glutamate receptor, ionotropic, AMPA 4

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes composed of multiple subunits, arranged to form ligand-gated ion channels. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. The subunit encoded by this gene belongs to a family of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate)-sensitive glutamate receptors, and is subject to RNA editing (AGA->GGA; R->G). Alternative splicing of this gene results in transcript variants encoding different isoforms, which may vary in their signal transduction properties. Some haplotypes of this gene show a positive association with schizophrenia. [provided by RefSeq, Jul 2008]

LOC392232 Gene

transient receptor potential cation channel, subfamily A, member 1 pseudogene

TNFRSF12A Gene

tumor necrosis factor receptor superfamily, member 12A

LOC286059 Gene

tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain pseudogene

OR7E7P Gene

olfactory receptor, family 7, subfamily E, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422479 Gene

integrin, alpha X (complement component 3 receptor 4 subunit) pseudogene

TRBV30 Gene

T cell receptor beta variable 30 (gene/pseudogene)

LOC102725015 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

LOC100288392 Gene

olfactory receptor pseudogene

OR7E22P Gene

olfactory receptor, family 7, subfamily E, member 22 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRL3-AS1 Gene

adhesion G protein-coupled receptor L3 antisense RNA 1

NRADDP Gene

neurotrophin receptor associated death domain, pseudogene

The neurotrophin receptor alike death domain proteins belong to the death domain superfamily and are involved in mediating apoptosis. This gene has been inactivated by mutation and is nonfunctional in humans. [provided by RefSeq, Oct 2008]

GLRB Gene

glycine receptor, beta

This gene encodes the beta subunit of the glycine receptor, which is a pentamer composed of alpha and beta subunits. The receptor functions as a neurotransmitter-gated ion channel, which produces hyperpolarization via increased chloride conductance due to the binding of glycine to the receptor. Mutations in this gene cause startle disease, also known as hereditary hyperekplexia or congenital stiff-person syndrome, a disease characterized by muscular rigidity. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

EPHA8 Gene

EPH receptor A8

This gene encodes a member of the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. The protein encoded by this gene functions as a receptor for ephrin A2, A3 and A5 and plays a role in short-range contact-mediated axonal guidance during development of the mammalian nervous system. [provided by RefSeq, Jul 2008]

EPHA7 Gene

EPH receptor A7

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Increased expression of this gene is associated with multiple forms of carcinoma. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

EPHA6 Gene

EPH receptor A6

EPHA5 Gene

EPH receptor A5

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Aug 2013]

EPHA4 Gene

EPH receptor A4

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2015]

EPHA3 Gene

EPH receptor A3

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. This gene encodes a protein that binds ephrin-A ligands. Two alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Jul 2008]

EPHA2 Gene

EPH receptor A2

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. This gene encodes a protein that binds ephrin-A ligands. Mutations in this gene are the cause of certain genetically-related cataract disorders.[provided by RefSeq, May 2010]

EPHA1 Gene

EPH receptor A1

This gene belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the EPH subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats. The ephrin receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. This gene is expressed in some human cancer cell lines and has been implicated in carcinogenesis. [provided by RefSeq, Jul 2008]

NCOR1P2 Gene

nuclear receptor corepressor 1 pseudogene 2

CD200R1 Gene

CD200 receptor 1

This gene encodes a receptor for the OX-2 membrane glycoprotein. Both the receptor and substrate are cell surface glycoproteins containing two immunoglobulin-like domains. This receptor is restricted to the surfaces of myeloid lineage cells and the receptor-substrate interaction may function as a myeloid downregulatory signal. Mouse studies of a related gene suggest that this interaction may control myeloid function in a tissue-specific manner. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jul 2008]

VN1R29P Gene

vomeronasal 1 receptor 29 pseudogene

PVRL1 Gene

poliovirus receptor-related 1 (herpesvirus entry mediator C)

This gene encodes an adhesion protein that plays a role in the organization of adherens junctions and tight junctions in epithelial and endothelial cells. The protein is a calcium(2+)-independent cell-cell adhesion molecule that belongs to the immunoglobulin superfamily and has 3 extracellular immunoglobulin-like loops, a single transmembrane domain (in some isoforms), and a cytoplasmic region. This protein acts as a receptor for glycoprotein D (gD) of herpes simplex viruses 1 and 2 (HSV-1, HSV-2), and pseudorabies virus (PRV) and mediates viral entry into epithelial and neuronal cells. Mutations in this gene cause cleft lip and palate/ectodermal dysplasia 1 syndrome (CLPED1) as well as non-syndromic cleft lip with or without cleft palate (CL/P). Alternative splicing results in multiple transcript variants encoding proteins with distinct C-termini. [provided by RefSeq, Oct 2009]

PVRL3 Gene

poliovirus receptor-related 3

This gene encodes a member of the nectin family of proteins, which function as adhesion molecules at adherens junctions. This family member interacts with other nectin-like proteins and with afadin, a filamentous actin-binding protein involved in the regulation of directional motility, cell proliferation and survival. This gene plays a role in ocular development involving the ciliary body. Mutations in this gene are believed to result in congenital ocular defects. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2011]

MC3R Gene

melanocortin 3 receptor

This gene encodes a G-protein-coupled receptor for melanocyte-stimulating hormone and adrenocorticotropic hormone that is expressed in tissues other than the adrenal cortex and melanocytes. This gene maps to the same region as the locus for benign neonatal epilepsy. Mice deficient for this gene have increased fat mass despite decreased food intake, suggesting a role for this gene product in the regulation of energy homeostasis. Mutations in this gene are associated with a susceptibility to obesity in humans. [provided by RefSeq, Jul 2008]

OR2AQ1P Gene

olfactory receptor, family 2, subfamily AQ, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ITGB1 Gene

integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)

Integrins are heterodimeric proteins made up of alpha and beta subunits. At least 18 alpha and 8 beta subunits have been described in mammals. Integrin family members are membrane receptors involved in cell adhesion and recognition in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic diffusion of tumor cells. This gene encodes a beta subunit. Multiple alternatively spliced transcript variants which encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

ITGB2 Gene

integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)

This gene encodes an integrin beta chain, which combines with multiple different alpha chains to form different integrin heterodimers. Integrins are integral cell-surface proteins that participate in cell adhesion as well as cell-surface mediated signalling. The encoded protein plays an important role in immune response and defects in this gene cause leukocyte adhesion deficiency. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

OR4A49P Gene

olfactory receptor, family 4, subfamily A, member 49 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL9R Gene

interleukin 9 receptor

The protein encoded by this gene is a cytokine receptor that specifically mediates the biological effects of interleukin 9 (IL9). The functional IL9 receptor complex requires this protein as well as the interleukin 2 receptor, gamma (IL2RG), a common gamma subunit shared by the receptors of many different cytokines. The ligand binding of this receptor leads to the activation of various JAK kinases and STAT proteins, which connect to different biologic responses. This gene is located at the pseudoautosomal regions of X and Y chromosomes. Genetic studies suggested an association of this gene with the development of asthma. Multiple pseudogenes on chromosome 9, 10, 16, and 18 have been described. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2008]

TAAR5 Gene

trace amine associated receptor 5

TAAR6 Gene

trace amine associated receptor 6

This gene encodes a seven-transmembrane G-protein-coupled receptor that likely functions as a receptor for endogenous trace amines. Mutations in this gene may be associated with schizophrenia.[provided by RefSeq, Feb 2010]

TAAR1 Gene

trace amine associated receptor 1

TAAR1 is a G protein-coupled receptor activated by trace amines. Trace amines are endogenous amine compounds that account for less than 1% of the biogenic amines in most brain regions (Bunzow et al., 2001 [PubMed 11723224]).[supplied by OMIM, Mar 2008]

TAAR3 Gene

trace amine associated receptor 3 (gene/pseudogene)

TAAR2 Gene

trace amine associated receptor 2

TAAR9 Gene

trace amine associated receptor 9 (gene/pseudogene)

TAAR9 is a member of a large family of rhodopsin G protein-coupled receptors (GPCRs, or GPRs). GPCRs contain 7 transmembrane domains and transduce extracellular signals through heterotrimeric G proteins.[supplied by OMIM, Jul 2005]

TAAR8 Gene

trace amine associated receptor 8

LOC100287290 Gene

cytokine receptor CRL2

TRBV3-1 Gene

T cell receptor beta variable 3-1

OR4Q1P Gene

olfactory receptor, family 4, subfamily Q, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CCKBR Gene

cholecystokinin B receptor

This gene encodes a G-protein coupled receptor for gastrin and cholecystokinin (CCK), regulatory peptides of the brain and gastrointestinal tract. This protein is a type B gastrin receptor, which has a high affinity for both sulfated and nonsulfated CCK analogs and is found principally in the central nervous system and the gastrointestinal tract. A misspliced transcript variant including an intron has been observed in cells from colorectal and pancreatic tumors. [provided by RefSeq, Jul 2008]

TRBV7-9 Gene

T cell receptor beta variable 7-9

TRBV7-8 Gene

T cell receptor beta variable 7-8

TRBV7-1 Gene

T cell receptor beta variable 7-1 (non-functional)

TRBV7-3 Gene

T cell receptor beta variable 7-3

TRBV7-2 Gene

T cell receptor beta variable 7-2

TRBV7-5 Gene

T cell receptor beta variable 7-5 (pseudogene)

TRBV7-4 Gene

T cell receptor beta variable 7-4 (gene/pseudogene)

TRBV7-7 Gene

T cell receptor beta variable 7-7

TRBV7-6 Gene

T cell receptor beta variable 7-6

LRP2 Gene

low density lipoprotein receptor-related protein 2

The protein encoded by this gene, low density lipoprotein-related protein 2 (LRP2) or megalin, is a multi-ligand endocytic receptor that is expressed in many different tissues but primarily in absorptive epithilial tissues such as the kidney. This glycoprotein has a large amino-terminal extracellular domain, a single transmembrane domain, and a short carboxy-terminal cytoplasmic tail. The extracellular ligand-binding-domains bind diverse macromolecules including albumin, apolipoproteins B and E, and lipoprotein lipase. The LRP2 protein is critical for the reuptake of numerous ligands, including lipoproteins, sterols, vitamin-binding proteins, and hormones. This protein also has a role in cell-signaling; extracellular ligands include parathyroid horomones and the morphogen sonic hedgehog while cytosolic ligands include MAP kinase scaffold proteins and JNK interacting proteins. Recycling of this membrane receptor is regulated by phosphorylation of its cytoplasmic domain. Mutations in this gene cause Donnai-Barrow syndrome (DBS) and facio-oculoacoustico-renal syndrome (FOAR).[provided by RefSeq, Aug 2009]

LRP3 Gene

low density lipoprotein receptor-related protein 3

LRP1 Gene

low density lipoprotein receptor-related protein 1

The protein encoded by this gene is an endocytic receptor involved in several cellular processes, including intracellular signaling, lipid homeostasis, and clearance of apoptotic cells. In addition, the encoded protein is necessary for the A2M-mediated clearance of secreted amyloid precursor protein and beta-amyloid, the main component of amyloid plaques found in Alzheimer patients. Expression of this gene decreases with age and has been found to be lower than controls in brain tissue from Alzheimer patients. [provided by RefSeq, Jan 2010]

LRP6 Gene

low density lipoprotein receptor-related protein 6

This gene encodes a member of the low density lipoprotein (LDL) receptor gene family. LDL receptors are transmembrane cell surface proteins involved in receptor-mediated endocytosis of lipoprotein and protein ligands. The protein encoded by this gene functions as a receptor or, with Frizzled, a co-receptor for Wnt and thereby transmits the canonical Wnt/beta-catenin signaling cascade. Through its interaction with the Wnt/beta-catenin signaling cascade this gene plays a role in the regulation of cell differentiation, proliferation, and migration and the development of many cancer types. This protein undergoes gamma-secretase dependent RIP- (regulated intramembrane proteolysis) processing but the precise locations of the cleavage sites have not been determined.[provided by RefSeq, Dec 2009]

LRP4 Gene

low density lipoprotein receptor-related protein 4

This gene encodes a member of the low-density lipoprotein receptor-related protein family. The encoded protein may be a regulator of Wnt signaling. Mutations in this gene are associated with Cenani-Lenz syndrome. [provided by RefSeq, May 2010]

LRP5 Gene

low density lipoprotein receptor-related protein 5

This gene encodes a transmembrane low-density lipoprotein receptor that binds and internalizes ligands in the process of receptor-mediated endocytosis. This protein also acts as a co-receptor with Frizzled protein family members for transducing signals by Wnt proteins and was originally cloned on the basis of its association with type 1 diabetes mellitus in humans. This protein plays a key role in skeletal homeostasis and many bone density related diseases are caused by mutations in this gene. Mutations in this gene also cause familial exudative vitreoretinopathy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

VN1R71P Gene

vomeronasal 1 receptor 71 pseudogene

OR4A50P Gene

olfactory receptor, family 4, subfamily A, member 50 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ANTXR1 Gene

anthrax toxin receptor 1

This gene encodes a type I transmembrane protein and is a tumor-specific endothelial marker that has been implicated in colorectal cancer. The encoded protein has been shown to also be a docking protein or receptor for Bacillus anthracis toxin, the causative agent of the disease, anthrax. The binding of the protective antigen (PA) component, of the tripartite anthrax toxin, to this receptor protein mediates delivery of toxin components to the cytosol of cells. Once inside the cell, the other two components of anthrax toxin, edema factor (EF) and lethal factor (LF) disrupt normal cellular processes. Three alternatively spliced variants that encode different protein isoforms have been described. [provided by RefSeq, Oct 2008]

ANTXR2 Gene

anthrax toxin receptor 2

This gene encodes a receptor for anthrax toxin. The protein binds to collagen IV and laminin, suggesting that it may be involved in extracellular matrix adhesion. Mutations in this gene cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

OR51S1 Gene

olfactory receptor, family 51, subfamily S, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPN22 Gene

protein tyrosine phosphatase, non-receptor type 22 (lymphoid)

This gene encodes of member of the non-receptor class 4 subfamily of the protein-tyrosine phosphatase family. The encoded protein is a lymphoid-specific intracellular phosphatase that associates with the molecular adapter protein CBL and may be involved in regulating CBL function in the T-cell receptor signaling pathway. Mutations in this gene may be associated with a range of autoimmune disorders including Type 1 Diabetes, rheumatoid arthritis, systemic lupus erythematosus and Graves' disease. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Mar 2009]

PTPN23 Gene

protein tyrosine phosphatase, non-receptor type 23

PTPN20 Gene

protein tyrosine phosphatase, non-receptor type 20

The product of this gene belongs to the family of classical tyrosine-specific protein tyrosine phosphatases. Many protein tyrosine phosphatases have been shown to regulate fundamental cellular processes. The encoded protein appears to be targeted to sites of actin polymerization. A pseudogene of this gene has been defined on chromosome 10. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

PTPN21 Gene

protein tyrosine phosphatase, non-receptor type 21

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain, similar to cytoskeletal- associated proteins including band 4.1, ezrin, merlin, and radixin. This PTP was shown to specially interact with BMX/ETK, a member of Tec tyrosine kinase family characterized by a multimodular structures including PH, SH3, and SH2 domains. The interaction of this PTP with BMX kinase was found to increase the activation of STAT3, but not STAT2 kinase. Studies of the similar gene in mice suggested the possible roles of this PTP in liver regeneration and spermatogenesis. [provided by RefSeq, Jul 2008]

VN2R13P Gene

vomeronasal 2 receptor 13 pseudogene

EPHA10 Gene

EPH receptor A10

Ephrin receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape, and mobility in neuronal and epithelial cells (Aasheim et al., 2005 [PubMed 15777695]). See MIM 179610 for additional background on Eph receptors and ephrins.[supplied by OMIM, Mar 2008]

ANTXRL Gene

anthrax toxin receptor-like

UTS2R Gene

urotensin 2 receptor

MSR1 Gene

macrophage scavenger receptor 1

This gene encodes the class A macrophage scavenger receptors, which include three different types (1, 2, 3) generated by alternative splicing of this gene. These receptors or isoforms are macrophage-specific trimeric integral membrane glycoproteins and have been implicated in many macrophage-associated physiological and pathological processes including atherosclerosis, Alzheimer's disease, and host defense. The isoforms type 1 and type 2 are functional receptors and are able to mediate the endocytosis of modified low density lipoproteins (LDLs). The isoform type 3 does not internalize modified LDL (acetyl-LDL) despite having the domain shown to mediate this function in the types 1 and 2 isoforms. It has an altered intracellular processing and is trapped within the endoplasmic reticulum, making it unable to perform endocytosis. The isoform type 3 can inhibit the function of isoforms type 1 and type 2 when co-expressed, indicating a dominant negative effect and suggesting a mechanism for regulation of scavenger receptor activity in macrophages. [provided by RefSeq, Jul 2008]

LOC100418640 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418641 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

OR4K13 Gene

olfactory receptor, family 4, subfamily K, member 13

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418643 Gene

olfactory receptor, family 2, subfamily G, member 6 pseudogene

CHRNA4 Gene

cholinergic receptor, nicotinic, alpha 4 (neuronal)

This gene encodes a nicotinic acetylcholine receptor, which belongs to a superfamily of ligand-gated ion channels that play a role in fast signal transmission at synapses. These pentameric receptors can bind acetylcholine, which causes an extensive change in conformation that leads to the opening of an ion-conducting channel across the plasma membrane. This protein is an integral membrane receptor subunit that can interact with either nAChR beta-2 or nAChR beta-4 to form a functional receptor. Mutations in this gene cause nocturnal frontal lobe epilepsy type 1. Polymorphisms in this gene that provide protection against nicotine addiction have been described. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2012]

CHRNA5 Gene

cholinergic receptor, nicotinic, alpha 5 (neuronal)

The protein encoded by this gene is a nicotinic acetylcholine receptor subunit and a member of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. These receptors are thought to be heteropentamers composed of separate but similar subunits. Defects in this gene have been linked to susceptibility to lung cancer type 2 (LNCR2).[provided by RefSeq, Jun 2010]

CHRNA6 Gene

cholinergic receptor, nicotinic, alpha 6 (neuronal)

This gene encodes an alpha subunit of neuronal nicotinic acetylcholine receptors. These receptors consist of five subunits and function as ion channels involved in neurotransmission. The encoded protein is a subunit of neuronal nicotinic acetylcholine receptors that mediate dopaminergic neurotransmission and are activated by acetylcholine and exogenous nicotine. Alternatively spliced transcript variants have been observed for this gene. Single nucleotide polymorphisms in this gene have been associated with both nicotine and alcohol dependence. [provided by RefSeq, Dec 2010]

CHRNA7 Gene

cholinergic receptor, nicotinic, alpha 7 (neuronal)

The nicotinic acetylcholine receptors (nAChRs) are members of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. The nAChRs are thought to be hetero-pentamers composed of homologous subunits. The proposed structure for each subunit is a conserved N-terminal extracellular domain followed by three conserved transmembrane domains, a variable cytoplasmic loop, a fourth conserved transmembrane domain, and a short C-terminal extracellular region. The protein encoded by this gene forms a homo-oligomeric channel, displays marked permeability to calcium ions and is a major component of brain nicotinic receptors that are blocked by, and highly sensitive to, alpha-bungarotoxin. Once this receptor binds acetylcholine, it undergoes an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. This gene is located in a region identified as a major susceptibility locus for juvenile myoclonic epilepsy and a chromosomal location involved in the genetic transmission of schizophrenia. An evolutionarily recent partial duplication event in this region results in a hybrid containing sequence from this gene and a novel FAM7A gene. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2012]

CHRNA1 Gene

cholinergic receptor, nicotinic, alpha 1 (muscle)

The muscle acetylcholine receptor consiststs of 5 subunits of 4 different types: 2 alpha subunits and 1 each of the beta, gamma, and delta subunits. This gene encodes an alpha subunit that plays a role in acetlycholine binding/channel gating. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Nov 2012]

CHRNA2 Gene

cholinergic receptor, nicotinic, alpha 2 (neuronal)

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels formed by a pentameric arrangement of alpha and beta subunits to create distinct muscle and neuronal receptors. Neuronal receptors are found throughout the peripheral and central nervous system where they are involved in fast synaptic transmission. This gene encodes an alpha subunit that is widely expressed in the brain. The proposed structure for nAChR subunits is a conserved N-terminal extracellular domain followed by three conserved transmembrane domains, a variable cytoplasmic loop, a fourth conserved transmembrane domain, and a short C-terminal extracellular region. Mutations in this gene cause autosomal dominant nocturnal frontal lobe epilepsy type 4. Single nucleotide polymorphisms (SNPs) in this gene have been associated with nicotine dependence. [provided by RefSeq, Nov 2009]

CHRNA3 Gene

cholinergic receptor, nicotinic, alpha 3 (neuronal)

This locus encodes a member of the nicotinic acetylcholine receptor family of proteins. Members of this family of proteins form pentameric complexes comprised of both alpha and beta subunits. This locus encodes an alpha-type subunit, as it contains characteristic adjacent cysteine residues. The encoded protein is a ligand-gated ion channel that likely plays a role in neurotransmission. Polymorphisms in this gene have been associated with an increased risk of smoking initiation and an increased susceptibility to lung cancer. Alternatively spliced transcript variants have been described. [provided by RefSeq, Nov 2009]

CHRNA9 Gene

cholinergic receptor, nicotinic, alpha 9 (neuronal)

This gene is a member of the ligand-gated ionic channel family and nicotinic acetylcholine receptor gene superfamily. It encodes a plasma membrane protein that forms homo- or hetero-oligomeric divalent cation channels. This protein is involved in cochlea hair cell development and is also expressed in the outer hair cells (OHCs) of the adult cochlea. [provided by RefSeq, Feb 2012]

LOC100418649 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

FSHR Gene

follicle stimulating hormone receptor

The protein encoded by this gene belongs to family 1 of G-protein coupled receptors. It is the receptor for follicle stimulating hormone and functions in gonad development. Mutations in this gene cause ovarian dysgenesis type 1, and also ovarian hyperstimulation syndrome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2010]

OR7H1P Gene

olfactory receptor, family 7, subfamily H, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R23P Gene

vomeronasal 1 receptor 23 pseudogene

ILDR2 Gene

immunoglobulin-like domain containing receptor 2

ILDR1 Gene

immunoglobulin-like domain containing receptor 1

This gene encodes a protein that contains an immunoglobulin-like domain. The encoded protein may function as a multimeric receptor at the cell surface. The expression of this gene may be a diagnostic marker for cancer progression. Alternatively spliced transcript variants encoding multiple protein isoforms have been observed for this gene. [provided by RefSeq, Dec 2010]

IL3RA Gene

interleukin 3 receptor, alpha (low affinity)

The protein encoded by this gene is an interleukin 3 specific subunit of a heterodimeric cytokine receptor. The receptor is comprised of a ligand specific alpha subunit and a signal transducing beta subunit shared by the receptors for interleukin 3 (IL3), colony stimulating factor 2 (CSF2/GM-CSF), and interleukin 5 (IL5). The binding of this protein to IL3 depends on the beta subunit. The beta subunit is activated by the ligand binding, and is required for the biological activities of IL3. This gene and the gene encoding the colony stimulating factor 2 receptor alpha chain (CSF2RA) form a cytokine receptor gene cluster in a X-Y pseudoautosomal region on chromosomes X or Y. Alternatively spliced transcript variants encoding distinct isoforms have been found. [provided by RefSeq, Jun 2012]

OR7E140P Gene

olfactory receptor, family 7, subfamily E, member 140 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AC4P Gene

olfactory receptor, family 5, subfamily AC, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5B19P Gene

olfactory receptor, family 5, subfamily B, member 19 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RELT Gene

RELT tumor necrosis factor receptor

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is especially abundant in hematologic tissues. It has been shown to activate the NF-kappaB pathway and selectively bind TNF receptor-associated factor 1 (TRAF1). This receptor is capable of stimulating T-cell proliferation in the presence of CD3 signaling, which suggests its regulatory role in immune response. Two alternatively spliced transcript variants of this gene encoding the same protein have been reported. [provided by RefSeq, Jul 2008]

PTH2R Gene

parathyroid hormone 2 receptor

The protein encoded by this gene is a member of the G-protein coupled receptor 2 family. This protein is a receptor for parathyroid hormone (PTH). This receptor is more selective in ligand recognition and has a more specific tissue distribution compared to parathyroid hormone receptor 1 (PTHR1). It is activated only by PTH and not by parathyroid hormone-like hormone (PTHLH) and is particularly abundant in brain and pancreas. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2013]

VN1R91P Gene

vomeronasal 1 receptor 91 pseudogene

CXADR Gene

coxsackie virus and adenovirus receptor

The protein encoded by this gene is a type I membrane receptor for group B coxsackieviruses and subgroup C adenoviruses. Several transcript variants encoding different isoforms have been found for this gene. Pseudogenes of this gene are found on chromosomes 15, 18, and 21. [provided by RefSeq, May 2011]

LOC100422010 Gene

olfactory receptor, family 8, subfamily B, member 2 pseudogene

LOC100422012 Gene

olfactory receptor, family 8, subfamily A, member 1 pseudogene

OR7E93P Gene

olfactory receptor, family 7, subfamily E, member 93 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13D3P Gene

olfactory receptor, family 13, subfamily D, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPY1R Gene

neuropeptide Y receptor Y1

This gene belongs to the G-protein-coupled receptor superfamily. The encoded transmembrane protein mediates the function of neuropeptide Y (NPY), a neurotransmitter, and peptide YY (PYY), a gastrointestinal hormone. The encoded receptor undergoes fast agonist-induced internalization through clathrin-coated pits and is subsequently recycled back to the cell membrane. Activation of Y1 receptors may result in mobilization of intracellular calcium and inhibition of adenylate cyclase activity. [provided by RefSeq, Aug 2013]

LOC100422196 Gene

olfactory receptor, family 4, subfamily F, member 15 pseudogene

OR4G11P Gene

olfactory receptor, family 4, subfamily G, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

DRD5P1 Gene

dopamine receptor D5 pseudogene 1

DRD5P2 Gene

dopamine receptor D5 pseudogene 2

COL1AR Gene

collagen, type I, alpha, receptor

TRAJ29 Gene

T cell receptor alpha joining 29

TRAJ28 Gene

T cell receptor alpha joining 28

TRAJ27 Gene

T cell receptor alpha joining 27

TRAJ26 Gene

T cell receptor alpha joining 26

TRAJ25 Gene

T cell receptor alpha joining 25 (non-functional)

TRAJ24 Gene

T cell receptor alpha joining 24

TRAJ23 Gene

T cell receptor alpha joining 23

TRAJ22 Gene

T cell receptor alpha joining 22

TRAJ21 Gene

T cell receptor alpha joining 21

TRAJ20 Gene

T cell receptor alpha joining 20

CCRL1P1 Gene

chemokine (C-C motif) receptor-like 1 pseudogene

P2RX1 Gene

purinergic receptor P2X, ligand gated ion channel, 1

The protein encoded by this gene belongs to the P2X family of G-protein-coupled receptors. These proteins can form homo-and heterotimers and function as ATP-gated ion channels and mediate rapid and selective permeability to cations. This protein is primarily localized to smooth muscle where binds ATP and mediates synaptic transmission between neurons and from neurons to smooth muscle and may being responsible for sympathetic vasoconstriction in small arteries, arterioles and vas deferens. Mouse studies suggest that this receptor is essential for normal male reproductive function. This protein may also be involved in promoting apoptosis. [provided by RefSeq, Jun 2013]

P2RX3 Gene

purinergic receptor P2X, ligand gated ion channel, 3

The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel and may transduce ATP-evoked nociceptor activation. Mouse studies suggest that this receptor is important for peripheral pain responses, and also participates in pathways controlling urinary bladder volume reflexes. It is possible that the development of selective antagonists for this receptor may have a therapeutic potential in pain relief and in the treatment of disorders of urine storage. [provided by RefSeq, Jul 2008]

P2RX2 Gene

purinergic receptor P2X, ligand gated ion channel, 2

The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Aug 2013]

P2RX5 Gene

purinergic receptor P2X, ligand gated ion channel, 5

The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel. Alternative splicing results in multiple transcript variants. Read-through transcription also exists between this gene and the neighboring downstream gene, TAX1BP3 (Tax1 binding protein 3). [provided by RefSeq, Mar 2011]

P2RX4 Gene

purinergic receptor P2X, ligand gated ion channel, 4

The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel with high calcium permeability. The main pharmacological distinction between the members of the purinoceptor family is the relative sensitivity to the antagonists suramin and PPADS. The product of this gene has the lowest sensitivity for these antagonists. Multiple alternatively spliced transcript variants, some protein-coding and some not protein-coding, have been found for this gene. [provided by RefSeq, Feb 2012]

P2RX6 Gene

purinergic receptor P2X, ligand gated ion channel, 6

The protein encoded by this gene belongs to the family of P2X receptors, which are ATP-gated ion channels and mediate rapid and selective permeability to cations. This gene is predominantly expressed in skeletal muscle, and regulated by p53. The encoded protein is associated with VE-cadherin at the adherens junctions of human umbilical vein endothelial cells. Alternative splicing results in multiple transcript variants. A related pseudogene, which is also located on chromosome 22, has been identified. [provided by RefSeq, Apr 2009]

ADGRF5P2 Gene

adhesion G protein-coupled receptor F5 pseudogene 2

ADGRF5P1 Gene

adhesion G protein-coupled receptor F5 pseudogene 1

TRAV5 Gene

T cell receptor alpha variable 5

FZD10 Gene

frizzled class receptor 10

This gene is a member of the frizzled gene family. Members of this family encode 7-transmembrane domain proteins that are receptors for the Wingless type MMTV integration site family of signaling proteins. Most frizzled receptors are coupled to the beta-catenin canonical signaling pathway. Using array analysis, expression of this intronless gene is significantly up-regulated in two cases of primary colon cancer. [provided by RefSeq, Jul 2008]

VN1R79P Gene

vomeronasal 1 receptor 79 pseudogene

SCARF2 Gene

scavenger receptor class F, member 2

The protein encoded by this gene is similar to SCARF1/SREC-I, a scavenger receptor protein that mediates the binding and degradation of acetylated low density lipoprotein (Ac-LDL). This protein has only little activity of internalizing modified low density lipoproteins (LDL), but it can interact with SCARF1 through its extracellular domain. The association of this protein with SCARF1 is suppressed by the presence of scavenger ligands. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

SCARF1 Gene

scavenger receptor class F, member 1

The protein encoded by this gene is a scavenger receptor that is expressed in endothelial cells. It regulates the uptake of chemically modified low density lipoproteins, including acetylated low density lipoprotein (Ac-LDL), and it may be involved in atherogenesis. This gene is regulated by the transcription factors ZNF444/EZF-2 and SP1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2013]

TRPC4AP Gene

transient receptor potential cation channel, subfamily C, member 4 associated protein

GRIN3A Gene

glutamate receptor, ionotropic, N-methyl-D-aspartate 3A

This gene encodes a subunit of the N-methyl-D-aspartate (NMDA) receptors, which belong to the superfamily of glutamate-regulated ion channels, and function in physiological and pathological processes in the central nervous system. This subunit shows greater than 90% identity to the corresponding subunit in rat. Studies in the knockout mouse deficient in this subunit suggest that this gene may be involved in the development of synaptic elements by modulating NMDA receptor activity. [provided by RefSeq, Jul 2008]

GRIN3B Gene

glutamate receptor, ionotropic, N-methyl-D-aspartate 3B

OR8F1P Gene

olfactory receptor, family 8, subfamily F, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R89P Gene

vomeronasal 1 receptor 89 pseudogene

TAS2R20 Gene

taste receptor, type 2, member 20

TAS2R22 Gene

taste receptor, type 2, member 22

SSC5D Gene

scavenger receptor cysteine rich family, 5 domains

PVR Gene

poliovirus receptor

The protein encoded by this gene is a transmembrane glycoprotein belonging to the immunoglobulin superfamily. The external domain mediates cell attachment to the extracellular matrix molecule vitronectin, while its intracellular domain interacts with the dynein light chain Tctex-1/DYNLT1. The gene is specific to the primate lineage, and serves as a cellular receptor for poliovirus in the first step of poliovirus replication. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

NRIP1 Gene

nuclear receptor interacting protein 1

Nuclear receptor interacting protein 1 (NRIP1) is a nuclear protein that specifically interacts with the hormone-dependent activation domain AF2 of nuclear receptors. Also known as RIP140, this protein modulates transcriptional activity of the estrogen receptor. [provided by RefSeq, Jul 2008]

NRIP2 Gene

nuclear receptor interacting protein 2

NRIP3 Gene

nuclear receptor interacting protein 3

OR4A9P Gene

olfactory receptor, family 4, subfamily A, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A41P Gene

olfactory receptor, family 4, subfamily A, member 41 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AS1P Gene

olfactory receptor, family 2, subfamily AS, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AO1P Gene

olfactory receptor, family 5, subfamily AO, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7A8P Gene

olfactory receptor, family 7, subfamily A, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52L2P Gene

olfactory receptor, family 52, subfamily L, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10U1P Gene

olfactory receptor, family 10, subfamily U, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418644 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418645 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418646 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418647 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100421938 Gene

olfactory receptor, family 13, subfamily D, member 1 pseudogene

LOC100421939 Gene

olfactory receptor, family 5, subfamily M, member 8 pseudogene

LOC100421937 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100421934 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100421935 Gene

olfactory receptor, family 13, subfamily C, member 8 pseudogene

LOC100421933 Gene

olfactory receptor, family 13, subfamily C, member 2 pseudogene

OR7E101P Gene

olfactory receptor, family 7, subfamily E, member 101 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CR1L Gene

complement component (3b/4b) receptor 1-like

OR2F1 Gene

olfactory receptor, family 2, subfamily F, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SORCS1 Gene

sortilin-related VPS10 domain containing receptor 1

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain; the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed in the central nervous system. Two of the five family members (sortilin and sortilin-related receptor) are synthesized as preproproteins; it is not yet known if this encoded protein is also a preproprotein. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

SORCS2 Gene

sortilin-related VPS10 domain containing receptor 2

This gene encodes one family member of vacuolar protein sorting 10 (VPS10) domain-containing receptor proteins. The VPS10 domain name comes from the yeast carboxypeptidase Y sorting receptor Vps10 protein. Members of this gene family are large with many exons but the CDS lengths are usually less than 3700 nt. Very large introns typically separate the exons encoding the VPS10 domain; the remaining exons are separated by much smaller-sized introns. These genes are strongly expressed in the central nervous system. [provided by RefSeq, Jul 2008]

SORCS3 Gene

sortilin-related VPS10 domain containing receptor 3

This gene encodes a type-I receptor transmembrane protein that is a member of the vacuolar protein sorting 10 receptor family. Proteins of this family are defined by a vacuolar protein sorting 10 domain at the N-terminus. The N-terminal segment of this domain has a consensus motif for proprotein convertase processing, and the C-terminal segment of this domain is characterized by ten conserved cysteine residues. The vacuolar protein sorting 10 domain is followed by a leucine-rich segment, a transmembrane domain, and a short C-terminal cytoplasmic domain that interacts with adaptor molecules. The transcript is expressed at high levels in the brain, and candidate gene studies suggest that genetic variation in this gene is associated with Alzheimer's disease. Consistent with this observation, knockdown of the gene in cell culture results in an increase in amyloid precursor protein processing. [provided by RefSeq, Dec 2014]

OR5BT1P Gene

olfactory receptor, family 5, subfamily BT, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BN1P Gene

olfactory receptor, family 5, subfamily BN, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E102P Gene

olfactory receptor, family 7, subfamily E, member 102 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R61P Gene

vomeronasal 1 receptor 61 pseudogene

TRAV29DV5 Gene

T cell receptor alpha variable 29/delta variable 5 (gene/pseudogene)

OR51F3P Gene

olfactory receptor, family 51, subfamily F, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52K1 Gene

olfactory receptor, family 52, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR119 Gene

G protein-coupled receptor 119

This gene encodes a member of the rhodopsin subfamily of G-protein-coupled receptors that is expressed in the pancreas and gastrointestinal tract. The encoded protein is activated by lipid amides including lysophosphatidylcholine and oleoylethanolamide and may be involved in glucose homeostasis. This protein is a potential drug target in the treatment of type 2 diabetes.[provided by RefSeq, Jan 2010]

OR2L3 Gene

olfactory receptor, family 2, subfamily L, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

P2RY14 Gene

purinergic receptor P2Y, G-protein coupled, 14

The product of this gene belongs to the family of G-protein coupled receptors, which contains several receptor subtypes with different pharmacological selectivity for various adenosine and uridine nucleotides. This receptor is a P2Y purinergic receptor for UDP-glucose and other UDP-sugars coupled to G-proteins. It has been implicated in extending the known immune system functions of P2Y receptors by participating in the regulation of the stem cell compartment, and it may also play a role in neuroimmune function. Two transcript variants encoding the same protein have been identified for this gene. [provided by RefSeq, Jul 2008]

P2RY10 Gene

purinergic receptor P2Y, G-protein coupled, 10

The protein encoded by this gene belongs to the family of G-protein coupled receptors, that are preferentially activated by adenosine and uridine nucleotides. Two alternatively spliced transcript variants encoding the same protein isoform have been found for this gene. [provided by RefSeq, Jul 2008]

P2RY11 Gene

purinergic receptor P2Y, G-protein coupled, 11

The product of this gene belongs to the family of G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor is coupled to the stimulation of the phosphoinositide and adenylyl cyclase pathways and behaves as a selective purinoceptor. Naturally occuring read-through transcripts, resulting from intergenic splicing between this gene and an immediately upstream gene (PPAN, encoding peter pan homolog), have been found. The PPAN-P2RY11 read-through mRNA is ubiquitously expressed and encodes a fusion protein that shares identity with each individual gene product. [provided by RefSeq, Jul 2008]

P2RY12 Gene

purinergic receptor P2Y, G-protein coupled, 12

The product of this gene belongs to the family of G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor is involved in platelet aggregation, and is a potential target for the treatment of thromboembolisms and other clotting disorders. Mutations in this gene are implicated in bleeding disorder, platelet type 8 (BDPLT8). Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jul 2013]

P2RY13 Gene

purinergic receptor P2Y, G-protein coupled, 13

The product of this gene belongs to the family of G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor is activated by ADP. [provided by RefSeq, Sep 2008]

LOC100420513 Gene

TNF receptor-associated factor 4 pseudogene

OR5BH1P Gene

olfactory receptor, family 5, subfamily BH, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5W2 Gene

olfactory receptor, family 5, subfamily W, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1X1P Gene

olfactory receptor, family 1, subfamily X, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OSCAR Gene

osteoclast associated, immunoglobulin-like receptor

Osteoclasts are multinucleated cells that resorb bone and are essential for bone homeostasis. This gene encodes an osteoclast-associated receptor (OSCAR), which is a member of the leukocyte receptor complex protein family that plays critical roles in the regulation of both innate and adaptive immune responses. The encoded protein may play a role in oxidative stress-mediated atherogenesis as well as monocyte adhesion. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

CRHR2 Gene

corticotropin releasing hormone receptor 2

The protein encoded by this gene belongs to the G-protein coupled receptor 2 family, and the subfamily of corticotropin releasing hormone receptor. This receptor shows high affinity for corticotropin releasing hormone (CRH), and also binds CRH-related peptides such as urocortin. CRH is synthesized in the hypothalamus, and plays an important role in coordinating the endocrine, autonomic, and behavioral responses to stress and immune challenge. Studies in mice suggest that this receptor maybe involved in mediating cardiovascular homeostasis. Alternatively spliced transcript variants encoding different isoforms have been described for this gene.[provided by RefSeq, Jan 2011]

CRHR1 Gene

corticotropin releasing hormone receptor 1

This gene encodes a G-protein coupled receptor that binds neuropeptides of the corticotropin releasing hormone family that are major regulators of the hypothalamic-pituitary-adrenal pathway. The encoded protein is essential for the activation of signal transduction pathways that regulate diverse physiological processes including stress, reproduction, immune response and obesity. Alternative splicing results in multiple transcript variants. Readthrough transcription also exists between this gene and upstream GeneID:401884 (ADP-ribosylation factor 3 pseudogene), and the readthrough transcripts encode isoforms that share similarity with the products of this gene. [provided by RefSeq, Dec 2014]

OR51C4P Gene

olfactory receptor, family 51, subfamily C, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E160P Gene

olfactory receptor, family 7, subfamily E, member 160 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1E2 Gene

olfactory receptor, family 1, subfamily E, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1E3 Gene

olfactory receptor, family 1, subfamily E, member 3 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1E1 Gene

olfactory receptor, family 1, subfamily E, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422098 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422099 Gene

olfactory receptor, family 5, subfamily B, member 21 pseudogene

DRD4 Gene

dopamine receptor D4

This gene encodes the D4 subtype of the dopamine receptor. The D4 subtype is a G-protein coupled receptor which inhibits adenylyl cyclase. It is a target for drugs which treat schizophrenia and Parkinson disease. Mutations in this gene have been associated with various behavioral phenotypes, including autonomic nervous system dysfunction, attention deficit/hyperactivity disorder, and the personality trait of novelty seeking. This gene contains a polymorphic number (2-10 copies) of tandem 48 nt repeats; the sequence shown contains four repeats. [provided by RefSeq, Jul 2008]

DRD5 Gene

dopamine receptor D5

This gene encodes the D5 subtype of the dopamine receptor. The D5 subtype is a G-protein coupled receptor which stimulates adenylyl cyclase. This receptor is expressed in neurons in the limbic regions of the brain. It has a 10-fold higher affinity for dopamine than the D1 subtype. Pseudogenes related to this gene reside on chromosomes 1 and 2. [provided by RefSeq, Jul 2008]

DRD2 Gene

dopamine receptor D2

This gene encodes the D2 subtype of the dopamine receptor. This G-protein coupled receptor inhibits adenylyl cyclase activity. A missense mutation in this gene causes myoclonus dystonia; other mutations have been associated with schizophrenia. Alternative splicing of this gene results in two transcript variants encoding different isoforms. A third variant has been described, but it has not been determined whether this form is normal or due to aberrant splicing. [provided by RefSeq, Jul 2008]

DRD3 Gene

dopamine receptor D3

This gene encodes the D3 subtype of the five (D1-D5) dopamine receptors. The activity of the D3 subtype receptor is mediated by G proteins which inhibit adenylyl cyclase. This receptor is localized to the limbic areas of the brain, which are associated with cognitive, emotional, and endocrine functions. Genetic variation in this gene may be associated with susceptibility to hereditary essential tremor 1. Alternative splicing of this gene results in transcript variants encoding different isoforms, although some variants may be subject to nonsense-mediated decay (NMD). [provided by RefSeq, Jul 2008]

DRD1 Gene

dopamine receptor D1

This gene encodes the D1 subtype of the dopamine receptor. The D1 subtype is the most abundant dopamine receptor in the central nervous system. This G-protein coupled receptor stimulates adenylyl cyclase and activates cyclic AMP-dependent protein kinases. D1 receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate dopamine receptor D2-mediated events. Alternate transcription initiation sites result in two transcript variants of this gene. [provided by RefSeq, Jul 2008]

VN2R17P Gene

vomeronasal 2 receptor 17 pseudogene

TNFRSF10A Gene

tumor necrosis factor receptor superfamily, member 10a

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL), and thus transduces cell death signal and induces cell apoptosis. Studies with FADD-deficient mice suggested that FADD, a death domain containing adaptor protein, is required for the apoptosis mediated by this protein. [provided by RefSeq, Jul 2008]

PROCR Gene

protein C receptor, endothelial

The protein encoded by this gene is a receptor for activated protein C, a serine protease activated by and involved in the blood coagulation pathway. The encoded protein is an N-glycosylated type I membrane protein that enhances the activation of protein C. Mutations in this gene have been associated with venous thromboembolism and myocardial infarction, as well as with late fetal loss during pregnancy. The encoded protein may also play a role in malarial infection and has been associated with cancer. [provided by RefSeq, Jul 2013]

OR7E31P Gene

olfactory receptor, family 7, subfamily E, member 31 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TLR10 Gene

toll-like receptor 10

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is most highly expressed in lymphoid tissues such as spleen, lymph node, thymus, and tonsil. Multiple alternatively spliced transcript variants which encode different protein isoforms have been found for this gene. [provided by RefSeq, Aug 2010]

SUCNR1 Gene

succinate receptor 1

This gene encodes a G-protein-coupled receptor for succinate, an intermediate molecule of the citric acid cycle. It is involved in the promotion of hematopoietic progenitor cell development, and it has a potential role in renovascular hypertension which has known correlations to renal failure, diabetes and atherosclerosis. [provided by RefSeq, Oct 2009]

TBXA2R Gene

thromboxane A2 receptor

This gene encodes a member of the G protein-coupled receptor family. The protein interacts with thromboxane A2 to induce platelet aggregation and regulate hemostasis. A mutation in this gene results in a bleeding disorder. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]

APELA Gene

apelin receptor early endogenous ligand

GABRR1 Gene

gamma-aminobutyric acid (GABA) A receptor, rho 1

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA receptors, which are ligand-gated chloride channels. GABRR1 is a member of the rho subunit family. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

GABRR2 Gene

gamma-aminobutyric acid (GABA) A receptor, rho 2

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA receptors, which are ligand-gated chloride channels. The protein encoded by this gene is a member of the rho subunit family and is a component of the GABA receptor complex. [provided by RefSeq, Jul 2008]

GABRR3 Gene

gamma-aminobutyric acid (GABA) A receptor, rho 3 (gene/pseudogene)

The neurotransmitter gamma-aminobutyric acid (GABA) functions in the central nervous system to regulate synaptic transmission of neurons. This gene encodes one of three related subunits, which combine as homo- or hetero-pentamers to form GABA(C) receptors. In humans, some individuals contain a single-base polymorphism (dbSNP rs832032) that is predicted to inactivate the gene product. [provided by RefSeq, Jan 2012]

TRGV5P Gene

T cell receptor gamma variable 5P (pseudogene)

LOC100422253 Gene

olfactory receptor, family 11, subfamily H, member 12 pseudogene

OR2AO1P Gene

olfactory receptor, family 2, subfamily AO, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL1RL1 Gene

interleukin 1 receptor-like 1

The protein encoded by this gene is a member of the interleukin 1 receptor family. Studies of the similar gene in mouse suggested that this receptor can be induced by proinflammatory stimuli, and may be involved in the function of helper T cells. This gene, interleukin 1 receptor, type I (IL1R1), interleukin 1 receptor, type II (IL1R2) and interleukin 1 receptor-like 2 (IL1RL2) form a cytokine receptor gene cluster in a region mapped to chromosome 2q12. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jul 2008]

IL1RL2 Gene

interleukin 1 receptor-like 2

The protein encoded by this gene is a member of the interleukin 1 receptor family. An experiment with transient gene expression demonstrated that this receptor was incapable of binding to interleukin 1 alpha and interleukin 1 beta with high affinity. This gene and four other interleukin 1 receptor family genes, including interleukin 1 receptor, type I (IL1R1), interleukin 1 receptor, type II (IL1R2), interleukin 1 receptor-like 1 (IL1RL1), and interleukin 18 receptor 1 (IL18R1), form a cytokine receptor gene cluster in a region mapped to chromosome 2q12. [provided by RefSeq, Jul 2008]

OR7E129P Gene

olfactory receptor, family 7, subfamily E, member 129 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A12P Gene

olfactory receptor, family 4, subfamily A, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TNFRSF21 Gene

tumor necrosis factor receptor superfamily, member 21

This gene encodes a member of the tumor necrosis factor receptor superfamily. The encoded protein activates nuclear factor kappa-B and mitogen-activated protein kinase 8 (also called c-Jun N-terminal kinase 1), and induces cell apoptosis. Through its death domain, the encoded receptor interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD) protein, which is known to mediate signal transduction of tumor necrosis factor receptors. Knockout studies in mice suggest that this gene plays a role in T-helper cell activation, and may be involved in inflammation and immune regulation. [provided by RefSeq, Jul 2013]

TNFRSF25 Gene

tumor necrosis factor receptor superfamily, member 25

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is expressed preferentially in the tissues enriched in lymphocytes, and it may play a role in regulating lymphocyte homeostasis. This receptor has been shown to stimulate NF-kappa B activity and regulate cell apoptosis. The signal transduction of this receptor is mediated by various death domain containing adaptor proteins. Knockout studies in mice suggested the role of this gene in the removal of self-reactive T cells in the thymus. Multiple alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported, most of which are potentially secreted molecules. The alternative splicing of this gene in B and T cells encounters a programmed change upon T-cell activation, which predominantly produces full-length, membrane bound isoforms, and is thought to be involved in controlling lymphocyte proliferation induced by T-cell activation. [provided by RefSeq, Jul 2008]

MRAP Gene

melanocortin 2 receptor accessory protein

This gene encodes a melanocortin receptor-interacting protein. The encoded protein regulates trafficking and function of the melanocortin 2 receptor in the adrenal gland. The encoded protein can also modulate signaling of other melanocortin receptors. Mutations in this gene have been associated with familial glucocorticoid deficiency type 2. Alternatively spliced transcript variants have been described. [provided by RefSeq, Dec 2009]

VN1R46P Gene

vomeronasal 1 receptor 46 pseudogene

OR5AK3P Gene

olfactory receptor, family 5, subfamily AK, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R1P Gene

vomeronasal 2 receptor 1 pseudogene

OR10Z1 Gene

olfactory receptor, family 10, subfamily Z, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CD244 Gene

CD244 molecule, natural killer cell receptor 2B4

This gene encodes a cell surface receptor expressed on natural killer (NK) cells (and some T cells) that mediate non-major histocompatibility complex (MHC) restricted killing. The interaction between NK-cell and target cells via this receptor is thought to modulate NK-cell cytolytic activity. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

OR4A17P Gene

olfactory receptor, family 4, subfamily A, member 17 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2E1P Gene

olfactory receptor, family 2, subfamily E, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421850 Gene

olfactory receptor, family 2, subfamily S, member 2 pseudogene

OR6R1P Gene

olfactory receptor, family 6, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SSR1 Gene

signal sequence receptor, alpha

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor associated with protein translocation across the ER membrane. The SSR consists of 2 subunits, a 34-kD glycoprotein encoded by this gene and a 22-kD glycoprotein. This gene generates several mRNA species as a result of complex alternative polyadenylation. This gene is unusual in that it utilizes arrays of polyA signal sequences that are mostly non-canonical. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

SSR2 Gene

signal sequence receptor, beta (translocon-associated protein beta)

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor associated with protein translocation across the ER membrane. The SSR consists of 2 subunits, a 34-kD glycoprotein (alpha-SSR or SSR1) and a 22-kD glycoprotein (beta-SSR or SSR2). The human beta-signal sequence receptor gene (SSR2) maps to chromosome bands 1q21-q23. [provided by RefSeq, Jul 2008]

SSR3 Gene

signal sequence receptor, gamma (translocon-associated protein gamma)

The signal sequence receptor (SSR) is a glycosylated endoplasmic reticulum (ER) membrane receptor associated with protein translocation across the ER membrane. The SSR is comprised of four membrane proteins/subunits: alpha, beta, gamma, and delta. The first two are glycosylated subunits and the latter two are non-glycosylated subunits. This gene encodes the gamma subunit, which is predicted to span the membrane four times. [provided by RefSeq, Aug 2010]

SSR4 Gene

signal sequence receptor, delta

This gene encodes the delta subunit of the translocon-associated protein complex which is involved in translocating proteins across the endoplasmic reticulum membrane. The encoded protein is located in the Xq28 region and is arranged in a compact head-to-head manner with the isocitrate dehydrogenase 3 (NAD+) gamma gene and both genes are driven by a CpG-embedded bidirectional promoter. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Mar 2011]

VN1R43P Gene

vomeronasal 1 receptor 43 pseudogene

LOC390846 Gene

golgi SNAP receptor complex member 2 pseudogene

OR7E87P Gene

olfactory receptor, family 7, subfamily E, member 87 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R10P Gene

vomeronasal 1 receptor 10 pseudogene

OR4A16 Gene

olfactory receptor, family 4, subfamily A, member 16

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A15 Gene

olfactory receptor, family 4, subfamily A, member 15

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPBWR1 Gene

neuropeptides B/W receptor 1

OR7E12P Gene

olfactory receptor, family 7, subfamily E, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A1P Gene

olfactory receptor, family 4, subfamily A, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR1E Gene

5-hydroxytryptamine (serotonin) receptor 1E, G protein-coupled

HTR1F Gene

5-hydroxytryptamine (serotonin) receptor 1F, G protein-coupled

HTR1A Gene

5-hydroxytryptamine (serotonin) receptor 1A, G protein-coupled

This gene encodes a G protein-coupled receptor for 5-hydroxytryptamine (serotonin), and belongs to the 5-hydroxytryptamine receptor subfamily. Serotonin has been implicated in a number of physiologic processes and pathologic conditions. Inactivation of this gene in mice results in behavior consistent with an increased anxiety and stress response. Mutation in the promoter of this gene has been associated with menstrual cycle-dependent periodic fevers. [provided by RefSeq, Jun 2012]

OR8C1P Gene

olfactory receptor, family 8, subfamily C, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC101060524 Gene

D(1B) dopamine receptor-like

ABL1 Gene

ABL proto-oncogene 1, non-receptor tyrosine kinase

This gene is a protooncogene that encodes a protein tyrosine kinase involved in a variety of cellular processes, including cell division, adhesion, differentiation, and response to stress. The activity of the protein is negatively regulated by its SH3 domain, whereby deletion of the region encoding this domain results in an oncogene. The ubiquitously expressed protein has DNA-binding activity that is regulated by CDC2-mediated phosphorylation, suggesting a cell cycle function. This gene has been found fused to a variety of translocation partner genes in various leukemias, most notably the t(9;22) translocation that results in a fusion with the 5' end of the breakpoint cluster region gene (BCR; MIM:151410). Alternative splicing of this gene results in two transcript variants, which contain alternative first exons that are spliced to the remaining common exons. [provided by RefSeq, Aug 2014]

ABL2 Gene

ABL proto-oncogene 2, non-receptor tyrosine kinase

This gene encodes a member of the Abelson family of nonreceptor tyrosine protein kinases. The protein is highly similar to the c-abl oncogene 1 protein, including the tyrosine kinase, SH2 and SH3 domains, and it plays a role in cytoskeletal rearrangements through its C-terminal F-actin- and microtubule-binding sequences. This gene is expressed in both normal and tumor cells, and is involved in translocation with the ets variant 6 gene in leukemia. Multiple alternatively spliced transcript variants encoding different protein isoforms have been found for this gene. [provided by RefSeq, Nov 2009]

PLGRKT Gene

plasminogen receptor, C-terminal lysine transmembrane protein

TRGV10 Gene

T cell receptor gamma variable 10 (non-functional)

SRA1 Gene

steroid receptor RNA activator 1

Both long non-coding and protein-coding RNAs are transcribed from this gene, and they represent alternatively spliced transcript variants. This gene was initially defined as a non-coding RNA, which is a coactivator for several nuclear receptors (NRs) and is associated with breast cancer. It has now been found that this gene is involved in the regulation of many NR and non-NR activities, including metabolism, adipogenesis and chromatin organization. The long non-coding RNA transcripts interact with a variety of proteins, including the protein encoded by this gene. The encoded protein acts as a transcriptional repressor by binding to the non-coding RNA. [provided by RefSeq, Mar 2012]

OR1AC1P Gene

olfactory receptor, family 1, subfamily AC, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9I1 Gene

olfactory receptor, family 9, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5D18 Gene

olfactory receptor, family 5, subfamily D, member 18

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5D13 Gene

olfactory receptor, family 5, subfamily D, member 13 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5D14 Gene

olfactory receptor, family 5, subfamily D, member 14

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5D16 Gene

olfactory receptor, family 5, subfamily D, member 16

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422713 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

LOC100422710 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1 pseudogene

LOC100422195 Gene

olfactory receptor, family 4, subfamily F, member 21 pseudogene

EPS15L1 Gene

epidermal growth factor receptor pathway substrate 15-like 1

SIGIRR Gene

single immunoglobulin and toll-interleukin 1 receptor (TIR) domain

LOC105379645 Gene

killer cell immunoglobulin-like receptor 2DL2

VN1R34P Gene

vomeronasal 1 receptor 34 pseudogene

VN1R69P Gene

vomeronasal 1 receptor 69 pseudogene

PKDREJ Gene

polycystin (PKD) family receptor for egg jelly

This intronless gene encodes a member of the polycystin protein family. The encoded protein contains 11 transmembrane domains, a receptor for egg jelly (REJ) domain, a G-protein-coupled receptor proteolytic site (GPS) domain, and a polycystin-1, lipoxygenase, alpha-toxin (PLAT) domain. This protein may play a role in human reproduction. Alternative splice variants have been described but their biological natures have not been determined. [provided by RefSeq, Jul 2008]

NPFFR2 Gene

neuropeptide FF receptor 2

This gene encodes a member of a subfamily of G-protein-coupled neuropeptide receptors. This protein is activated by the neuropeptides A-18-amide (NPAF) and F-8-amide (NPFF) and may function in pain modulation and regulation of the opioid system. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2009]

NPFFR1 Gene

neuropeptide FF receptor 1

F2RL3 Gene

coagulation factor II (thrombin) receptor-like 3

Coagulation factor II (thrombin) receptor-like 3 (F2RL3) is a member of the large family of 7-transmembrane-region receptors that couple to guanosine-nucleotide-binding proteins. F2RL3 is also a member of the protease-activated receptor family. F2RL3 is activated by proteolytic cleavage of its extracellular amino terminus. The new amino terminus functions as a tethered ligand and activates the receptor. F2RL3 is activated by thrombin and trypsin. [provided by RefSeq, Jul 2008]

F2RL2 Gene

coagulation factor II (thrombin) receptor-like 2

This gene encodes a member of the protease-activated receptor (PAR) family which is a subfamily of the seven transmembrane G protein-coupled cell surface receptor family. The encoded protein acts as a cofactor in the thrombin-mediated cleavage and activation of the protease-activated receptor family member PAR4. The encoded protein plays an essential role in hemostasis and thrombosis. Alternate splicing results in multiple transcript variants that encode different isoforms. [provided by RefSeq, Feb 2012]

F2RL1 Gene

coagulation factor II (thrombin) receptor-like 1

Coagulation factor II (thrombin) receptor-like 1 (F2RL1) is a member of the large family of 7-transmembrane-region receptors that couple to guanosine-nucleotide-binding proteins. F2RL1 is also a member of the protease-activated receptor family. It is activated by trypsin, but not by thrombin. It is activated by proteolytic cleavage of its extracellular amino terminus. The new amino terminus functions as a tethered ligand and activates the receptor. The F2RL1 gene contains two exons and is widely expressed in human tissues. The predicted protein sequence is 83% identical to the mouse receptor sequence. [provided by RefSeq, Jul 2008]

HAVCR1 Gene

hepatitis A virus cellular receptor 1

The protein encoded by this gene is a membrane receptor for both human hepatitis A virus (HHAV) and TIMD4. The encoded protein may be involved in the moderation of asthma and allergic diseases. The reference genome represents an allele that retains a MTTVP amino acid segment that confers protection against atopy in HHAV seropositive individuals. Alternative splicing of this gene results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 4, 12 and 19. [provided by RefSeq, Apr 2015]

OR7E62P Gene

olfactory receptor, family 7, subfamily E, member 62 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R14P Gene

vomeronasal 1 receptor 14 pseudogene

LAIR1 Gene

leukocyte-associated immunoglobulin-like receptor 1

The protein encoded by this gene is an inhibitory receptor found on peripheral mononuclear cells, including natural killer cells, T cells, and B cells. Inhibitory receptors regulate the immune response to prevent lysis of cells recognized as self. The gene is a member of both the immunoglobulin superfamily and the leukocyte-associated inhibitory receptor family. The gene maps to a region of 19q13.4 called the leukocyte receptor cluster, which contains at least 29 genes encoding leukocyte-expressed receptors of the immunoglobulin superfamily. The encoded protein has been identified as an anchor for tyrosine phosphatase SHP-1, and may induce cell death in myeloid leukemias. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

LAIR2 Gene

leukocyte-associated immunoglobulin-like receptor 2

The protein encoded by this gene is a member of the immunoglobulin superfamily. It was identified by its similarity to leukocyte-associated immunoglobulin-like receptor 1, a membrane-bound receptor that modulates innate immune response. The protein encoded by this locus is a soluble receptor that may play roles in both inhibition of collagen-induced platelet aggregation and vessel formation during placental implantation. This gene maps to a region of 19q13.4, termed the leukocyte receptor cluster, which contains 29 genes in the immunoglobulin superfamily. Alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Sep 2013]

OR4C2P Gene

olfactory receptor, family 4, subfamily C, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPBWR2 Gene

neuropeptides B/W receptor 2

The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor. The encoded protein is similar in sequence to another G protein-coupled receptor (GPR7), and it is structurally similar to opioid and somatostatin receptors. This protein binds neuropeptides B and W. This gene is intronless and is expressed primarily in the frontal cortex of the brain. [provided by RefSeq, Jul 2008]

OR7K1P Gene

olfactory receptor, family 7, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AK2 Gene

olfactory receptor, family 2, subfamily AK, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL20RA Gene

interleukin 20 receptor, alpha

This gene encodes a member of the type II cytokine receptor family. The encoded protein is a subunit of the receptor for interleukin 20, a cytokine that may be involved in epidermal function. The interleukin 20 receptor is a heterodimeric complex consisting of the encoded protein and interleukin 20 receptor beta. This gene and interleukin 20 receptor beta are highly expressed in skin, and are upregulated in psoriasis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

IL20RB Gene

interleukin 20 receptor beta

IL20RB and IL20RA (MIM 605620) form a heterodimeric receptor for interleukin-20 (IL20; MIM 605619) (Blumberg et al., 2001 [PubMed 11163236]).[supplied by OMIM, Feb 2009]

LOC442113 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

OR6C66P Gene

olfactory receptor, family 6, subfamily C, member 66 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1M1 Gene

olfactory receptor, family 1, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV21OR9-2 Gene

T cell receptor beta variable 21/OR9-2 (pseudogene)

ACVR1 Gene

activin A receptor, type I

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I ( I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type I receptor which signals a particular transcriptional response in concert with activin type II receptors. Mutations in this gene are associated with fibrodysplasia ossificans progressive. [provided by RefSeq, Jul 2008]

OR2X1P Gene

olfactory receptor, family 2, subfamily X, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H3P Gene

olfactory receptor, family 11, subfamily H, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AM1P Gene

olfactory receptor, family 2, subfamily AM, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1M4P Gene

olfactory receptor, family 1, subfamily M, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E39P Gene

olfactory receptor, family 7, subfamily E, member 39 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E110P Gene

olfactory receptor, family 7, subfamily E, member 110 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R55P Gene

vomeronasal 1 receptor 55 pseudogene

KLRG1 Gene

killer cell lectin-like receptor subfamily G, member 1

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. The protein encoded by this gene belongs to the killer cell lectin-like receptor (KLR) family, which is a group of transmembrane proteins preferentially expressed in NK cells. Studies in mice suggested that the expression of this gene may be regulated by MHC class I molecules. Alternatively spliced transcript variants have been reported, but their full-length natures have not yet been determined. [provided by RefSeq, Jul 2008]

IL21R Gene

interleukin 21 receptor

The protein encoded by this gene is a cytokine receptor for interleukin 21 (IL21). It belongs to the type I cytokine receptors, and has been shown to form a heterodimeric receptor complex with the common gamma-chain, a receptor subunit also shared by the receptors for interleukin 2, 4, 7, 9, and 15. This receptor transduces the growth promoting signal of IL21, and is important for the proliferation and differentiation of T cells, B cells, and natural killer (NK) cells. The ligand binding of this receptor leads to the activation of multiple downstream signaling molecules, including JAK1, JAK3, STAT1, and STAT3. Knockout studies of a similar gene in mouse suggest a role for this gene in regulating immunoglobulin production. Three alternatively spliced transcript variants have been described. [provided by RefSeq, Jul 2010]

LOC101054525 Gene

progesterone receptor antisense RNA

RARA Gene

retinoic acid receptor, alpha

This gene represents a nuclear retinoic acid receptor. The encoded protein, retinoic acid receptor alpha, regulates transcription in a ligand-dependent manner. This gene has been implicated in regulation of development, differentiation, apoptosis, granulopoeisis, and transcription of clock genes. Translocations between this locus and several other loci have been associated with acute promyelocytic leukemia. Alternatively spliced transcript variants have been found for this locus.[provided by RefSeq, Sep 2010]

TAS2R50 Gene

taste receptor, type 2, member 50

TAS2R50 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). See also TAS2R10 (MIM 604791).[supplied by OMIM, Mar 2008]

RARB Gene

retinoic acid receptor, beta

This gene encodes retinoic acid receptor beta, a member of the thyroid-steroid hormone receptor superfamily of nuclear transcriptional regulators. This receptor localizes to the cytoplasm and to subnuclear compartments. It binds retinoic acid, the biologically active form of vitamin A which mediates cellular signalling in embryonic morphogenesis, cell growth and differentiation. It is thought that this protein limits growth of many cell types by regulating gene expression. The gene was first identified in a hepatocellular carcinoma where it flanks a hepatitis B virus integration site. Alternate promoter usage and differential splicing result in multiple transcript variants. [provided by RefSeq, Mar 2014]

LOC100420413 Gene

G protein-coupled receptor 141 pseudogene

OR4U1P Gene

olfactory receptor, family 4, subfamily U, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8V1P Gene

olfactory receptor, family 8, subfamily V, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8S21P Gene

olfactory receptor, family 8, subfamily S, member 21 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPRCAP Gene

protein tyrosine phosphatase, receptor type, C-associated protein

The protein encoded by this gene was identified as a transmembrane phosphoprotein specifically associated with tyrosine phosphatase PTPRC/CD45, a key regulator of T- and B-lymphocyte activation. The interaction with PTPRC may be required for the stable expression of this protein. [provided by RefSeq, Jul 2008]

VN2R9P Gene

vomeronasal 2 receptor 9 pseudogene

OR5H15 Gene

olfactory receptor, family 5, subfamily H, member 15

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H14 Gene

olfactory receptor, family 5, subfamily H, member 14

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E2P Gene

olfactory receptor, family 7, subfamily E, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E24 Gene

olfactory receptor, family 7, subfamily E, member 24

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E125P Gene

olfactory receptor, family 7, subfamily E, member 125 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10R2 Gene

olfactory receptor, family 10, subfamily R, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LEPROT Gene

leptin receptor overlapping transcript

LEPROT is associated with the Golgi complex and endosomes and has a role in cell surface expression of growth hormone receptor (GHR; MIM 600946) and leptin receptor (OBR, or LEPR; MIM 601007), thereby altering receptor-mediated cell signaling (Couturier et al., 2007 [PubMed 18042720]; Touvier et al., 2009 [PubMed 19907080]).[supplied by OMIM, Jul 2010]

OR11L1 Gene

olfactory receptor, family 11, subfamily L, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R18P Gene

vomeronasal 1 receptor 18 pseudogene

CYSLTR2 Gene

cysteinyl leukotriene receptor 2

The cysteinyl leukotrienes LTC4, LTD4, and LTE4 are important mediators of human bronchial asthma. Pharmacologic studies have determined that cysteinyl leukotrienes activate at least 2 receptors, the protein encoded by this gene and CYSLTR1. This encoded receptor is a member of the superfamily of G protein-coupled receptors. It seems to play a major role in endocrine and cardiovascular systems. [provided by RefSeq, Jul 2008]

CYSLTR1 Gene

cysteinyl leukotriene receptor 1

This gene encodes a member of the G-protein coupled receptor 1 family. The encoded protein is a receptor for cysteinyl leukotrienes, and is involved in mediating bronchoconstriction via activation of a phosphatidylinositol-calcium second messenger system. Activation of the encoded receptor results in contraction and proliferation of bronchial smooth muscle cells, eosinophil migration, and damage to the mucus layer in the lung. Upregulation of this gene is associated with asthma and dysregulation may also be implicated in cancer. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]

PTGIR Gene

prostaglandin I2 (prostacyclin) receptor (IP)

The protein encoded by this gene is a member of the G-protein coupled receptor family 1 and has been shown to be a receptor for prostacyclin. Prostacyclin, the major product of cyclooxygenase in macrovascular endothelium, elicits a potent vasodilation and inhibition of platelet aggregation through binding to this receptor. [provided by RefSeq, Jul 2008]

OR7E21P Gene

olfactory receptor, family 7, subfamily E, member 21 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6W1P Gene

olfactory receptor, family 6, subfamily W, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AHR Gene

aryl hydrocarbon receptor

This gene encodes a ligand-activated transcription factor involved in the regulation of biological responses to planar aromatic hydrocarbons. This receptor has been shown to regulate xenobiotic-metabolizing enzymes such as cytochrome P450. Its ligands included a variety of aromatic hydrocarbons. [provided by RefSeq, Jul 2008]

NR2C2AP Gene

nuclear receptor 2C2-associated protein

P2RX6P Gene

purinergic receptor P2X, ligand gated ion channel, 6 pseudogene

FGFR3P5 Gene

fibroblast growth factor receptor 3 pseudogene 5

LOC222344 Gene

TNF receptor-associated factor 6

CXCR3 Gene

chemokine (C-X-C motif) receptor 3

This gene encodes a G protein-coupled receptor with selectivity for three chemokines, termed CXCL9/Mig (monokine induced by interferon-g), CXCL10/IP10 (interferon-g-inducible 10 kDa protein) and CXCL11/I-TAC (interferon-inducible T cell a-chemoattractant). Binding of chemokines to this protein induces cellular responses that are involved in leukocyte traffic, most notably integrin activation, cytoskeletal changes and chemotactic migration. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. One of the isoforms (CXCR3-B) shows high affinity binding to chemokine, CXCL4/PF4 (PMID:12782716). [provided by RefSeq, Jun 2011]

CXCR2 Gene

chemokine (C-X-C motif) receptor 2

The protein encoded by this gene is a member of the G-protein-coupled receptor family. This protein is a receptor for interleukin 8 (IL8). It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. This receptor also binds to chemokine (C-X-C motif) ligand 1 (CXCL1/MGSA), a protein with melanoma growth stimulating activity, and has been shown to be a major component required for serum-dependent melanoma cell growth. This receptor mediates neutrophil migration to sites of inflammation. The angiogenic effects of IL8 in intestinal microvascular endothelial cells are found to be mediated by this receptor. Knockout studies in mice suggested that this receptor controls the positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. This gene, IL8RA, a gene encoding another high affinity IL8 receptor, as well as IL8RBP, a pseudogene of IL8RB, form a gene cluster in a region mapped to chromosome 2q33-q36. Alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Nov 2009]

CXCR1 Gene

chemokine (C-X-C motif) receptor 1

The protein encoded by this gene is a member of the G-protein-coupled receptor family. This protein is a receptor for interleukin 8 (IL8). It binds to IL8 with high affinity, and transduces the signal through a G-protein activated second messenger system. Knockout studies in mice suggested that this protein inhibits embryonic oligodendrocyte precursor migration in developing spinal cord. This gene, IL8RB, a gene encoding another high affinity IL8 receptor, as well as IL8RBP, a pseudogene of IL8RB, form a gene cluster in a region mapped to chromosome 2q33-q36. [provided by RefSeq, Jul 2008]

CXCR6 Gene

chemokine (C-X-C motif) receptor 6

CXCR5 Gene

chemokine (C-X-C motif) receptor 5

This gene encodes a multi-pass membrane protein that belongs to the CXC chemokine receptor family. It is expressed in mature B-cells and Burkitt's lymphoma. This cytokine receptor binds to B-lymphocyte chemoattractant (BLC), and is involved in B-cell migration into B-cell follicles of spleen and Peyer patches. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Aug 2011]

CXCR4 Gene

chemokine (C-X-C motif) receptor 4

This gene encodes a CXC chemokine receptor specific for stromal cell-derived factor-1. The protein has 7 transmembrane regions and is located on the cell surface. It acts with the CD4 protein to support HIV entry into cells and is also highly expressed in breast cancer cells. Mutations in this gene have been associated with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

OR9A2 Gene

olfactory receptor, family 9, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9A4 Gene

olfactory receptor, family 9, subfamily A, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV14DV4 Gene

T cell receptor alpha variable 14/delta variable 4

LOC100422111 Gene

olfactory receptor, family 7, subfamily A, member 10 pseudogene

LOC100422110 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422115 Gene

olfactory receptor, family 52, subfamily B, member 6 pseudogene

LOC100422117 Gene

olfactory receptor, family 51, subfamily L, member 1 pseudogene

LOC100422116 Gene

olfactory receptor, family 52, subfamily M, member 1 pseudogene

OR2V2 Gene

olfactory receptor, family 2, subfamily V, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KLRG2 Gene

killer cell lectin-like receptor subfamily G, member 2

OR9G2P Gene

olfactory receptor, family 9, subfamily G, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KLRB1 Gene

killer cell lectin-like receptor subfamily B, member 1

Natural killer (NK) cells are lymphocytes that mediate cytotoxicity and secrete cytokines after immune stimulation. Several genes of the C-type lectin superfamily, including the rodent NKRP1 family of glycoproteins, are expressed by NK cells and may be involved in the regulation of NK cell function. The KLRB1 protein contains an extracellular domain with several motifs characteristic of C-type lectins, a transmembrane domain, and a cytoplasmic domain. The KLRB1 protein is classified as a type II membrane protein because it has an external C terminus. [provided by RefSeq, Jul 2008]

OR9H1P Gene

olfactory receptor, family 9, subfamily H, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADORA1 Gene

adenosine A1 receptor

The protein encoded by this gene is an adenosine receptor that belongs to the G-protein coupled receptor 1 family. There are 3 types of adenosine receptors, each with a specific pattern of ligand binding and tissue distribution, and together they regulate a diverse set of physiologic functions. The type A1 receptors inhibit adenylyl cyclase, and play a role in the fertilization process. Animal studies also suggest a role for A1 receptors in kidney function and ethanol intoxication. Transcript variants with alternative splicing in the 5' UTR have been found for this gene. [provided by RefSeq, Jul 2008]

ADORA3 Gene

adenosine A3 receptor

This gene encodes a protein that belongs to the family of adenosine receptors, which are G-protein-coupled receptors that are involved in a variety of intracellular signaling pathways and physiological functions. The receptor encoded by this gene mediates a sustained cardioprotective function during cardiac ischemia, it is involved in the inhibition of neutrophil degranulation in neutrophil-mediated tissue injury, it has been implicated in both neuroprotective and neurodegenerative effects, and it may also mediate both cell proliferation and cell death. Alternative splicing results in multiple transcript variants. This gene shares its 5' terminal exon with some transcripts from overlapping GeneID:57413, which encodes an immunoglobulin domain-containing protein. [provided by RefSeq, Nov 2014]

OR8G7P Gene

olfactory receptor, family 8, subfamily G, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51A8P Gene

olfactory receptor, family 51, subfamily A, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BA1P Gene

olfactory receptor, family 5, subfamily BA, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2M5 Gene

olfactory receptor, family 2, subfamily M, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2M4 Gene

olfactory receptor, family 2, subfamily M, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2M7 Gene

olfactory receptor, family 2, subfamily M, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2M3 Gene

olfactory receptor, family 2, subfamily M, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRK6 Gene

G protein-coupled receptor kinase 6

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating their deactivation. Several transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

GRK7 Gene

G protein-coupled receptor kinase 7

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. It is specifically expressed in the retina and the encoded protein has been shown to phosphorylate cone opsins and initiate their deactivation. [provided by RefSeq, Jul 2008]

GRK4 Gene

G protein-coupled receptor kinase 4

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating its deactivation. This gene has been linked to both genetic and acquired hypertension. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

GRK5 Gene

G protein-coupled receptor kinase 5

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the activated forms of G protein-coupled receptors thus initiating their deactivation. It has also been shown to play a role in regulating the motility of polymorphonuclear leukocytes (PMNs). [provided by RefSeq, Jul 2008]

GRK1 Gene

G protein-coupled receptor kinase 1

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates rhodopsin and initiates its deactivation. Defects in GRK1 are known to cause Oguchi disease 2 (also known as stationary night blindness Oguchi type-2). [provided by RefSeq, Jul 2008]

OR56B2P Gene

olfactory receptor, family 56, subfamily B, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRA1 Gene

adhesion G protein-coupled receptor A1

This gene encodes a protein that belongs to the adhesion family of G-protein-coupled receptors. Members of this family function in several sensory systems and regulate blood pressure, immune responses, food intake and development. A similar protein in rodents is thought to play a role in in the regulation of neuronal signaling pathways. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Mar 2014]

ADGRA3 Gene

adhesion G protein-coupled receptor A3

This gene encodes a member of the G protein-coupled receptor superfamily. This membrane protein may play a role in tumor angiogenesis through its interaction with the human homolog of the Drosophila disc large tumor suppressor gene. This gene is mapped to a candidate region of chromosome 4 which may be associated with bipolar disorder and schizophrenia. [provided by RefSeq, Oct 2012]

ADGRA2 Gene

adhesion G protein-coupled receptor A2

TAS2R64P Gene

taste receptor, type 2, member 64, pseudogene

VN1R93P Gene

vomeronasal 1 receptor 93 pseudogene

OR5D17P Gene

olfactory receptor, family 5, subfamily D, member 17 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B12 Gene

olfactory receptor, family 8, subfamily B, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B1P Gene

olfactory receptor, family 8, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC440040 Gene

glutamate receptor, metabotropic 5 pseudogene

TRBD1 Gene

T cell receptor beta diversity 1

GRB10 Gene

growth factor receptor-bound protein 10

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with insulin receptors and insulin-like growth-factor receptors. Overexpression of some isoforms of the encoded protein inhibits tyrosine kinase activity and results in growth suppression. This gene is imprinted in a highly isoform- and tissue-specific manner, with expression observed from the paternal allele in the brain, and from the maternal allele in the placental trophoblasts. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Oct 2010]

GRB14 Gene

growth factor receptor-bound protein 14

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with insulin receptors and insulin-like growth-factor receptors. This protein likely has an inhibitory effect on receptor tyrosine kinase signaling and, in particular, on insulin receptor signaling. This gene may play a role in signaling pathways that regulate growth and metabolism. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2014]

GPR15 Gene

G protein-coupled receptor 15

This gene encodes a G protein-coupled receptor that acts as a chemokine receptor for human immunodeficiency virus type 1 and 2. The encoded protein localizes to the cell membrane. [provided by RefSeq, Nov 2012]

GPR12 Gene

G protein-coupled receptor 12

LOC105379650 Gene

killer cell immunoglobulin-like receptor 2DS1

GPR19 Gene

G protein-coupled receptor 19

GPR18 Gene

G protein-coupled receptor 18

ARNTL Gene

aryl hydrocarbon receptor nuclear translocator-like

The protein encoded by this gene is a basic helix-loop-helix protein that forms a heterodimer with CLOCK. This heterodimer binds E-box enhancer elements upstream of Period (PER1, PER2, PER3) and Cryptochrome (CRY1, CRY2) genes and activates transcription of these genes. PER and CRY proteins heterodimerize and repress their own transcription by interacting in a feedback loop with CLOCK/ARNTL complexes. Defects in this gene have been linked to infertility, problems with gluconeogenesis and lipogenesis, and altered sleep patterns. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2014]

OR14C36 Gene

olfactory receptor, family 14, subfamily C, member 36

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ARNT2 Gene

aryl-hydrocarbon receptor nuclear translocator 2

This gene encodes a member of the basic-helix-loop-helix-Per-Arnt-Sim (bHLH-PAS) superfamily of transcription factors. The encoded protein acts as a partner for several sensor proteins of the bHLH-PAS family, forming heterodimers with the sensor proteins that bind regulatory DNA sequences in genes responsive to developmental and environmental stimuli. Under hypoxic conditions, the encoded protein complexes with hypoxia-inducible factor 1alpha in the nucleus and this complex binds to hypoxia-responsive elements in enhancers and promoters of oxygen-responsive genes. A highly similar protein in mouse forms functional complexes with both aryl hydrocarbon receptors and Single-minded proteins, suggesting additional roles for the encoded protein in the metabolism of xenobiotic compounds and the regulation of neurogenesis, respectively. [provided by RefSeq, Dec 2013]

OR10AE3P Gene

olfactory receptor, family 10, subfamily AE, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51N1P Gene

olfactory receptor, family 51, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5E1P Gene

olfactory receptor, family 5, subfamily E, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E145P Gene

olfactory receptor, family 7, subfamily E, member 145 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6K4P Gene

olfactory receptor, family 6, subfamily K, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422151 Gene

olfactory receptor, family 51, subfamily A, member 7 pseudogene

VN1R26P Gene

vomeronasal 1 receptor 26 pseudogene

OR2B7P Gene

olfactory receptor, family 2, subfamily B, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11N1P Gene

olfactory receptor, family 11, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PLA2R1 Gene

phospholipase A2 receptor 1, 180kDa

This gene represents a phospholipase A2 receptor. The encoded protein likely exists as both a transmembrane form and a soluble form. The transmembrane receptor may play a role in clearance of phospholipase A2, thereby inhibiting its action. Polymorphisms at this locus have been associated with susceptibility to idiopathic membranous nephropathy. Alternatively spliced transcript variants encoding different isoforms have been identified.[provided by RefSeq, Sep 2010]

LOC100418657 Gene

olfactory receptor, family 2, subfamily G, member 6 pseudogene

OR52H2P Gene

olfactory receptor, family 52, subfamily H, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AU1 Gene

olfactory receptor, family 5, subfamily AU, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13J1 Gene

olfactory receptor, family 13, subfamily J, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R92P Gene

vomeronasal 1 receptor 92 pseudogene

OR2U1P Gene

olfactory receptor, family 2, subfamily U, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

EDA2R Gene

ectodysplasin A2 receptor

EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that are encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. The protein encoded by this gene specifically binds to EDA-A2 isoform. This protein is a type III transmembrane protein of the TNFR (tumor necrosis factor receptor) superfamily, and contains 3 cysteine-rich repeats and a single transmembrane domain but lacks an N-terminal signal peptide. Alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, May 2011]

RARG Gene

retinoic acid receptor, gamma

This gene encodes a retinoic acid receptor that belongs to the nuclear hormone receptor family. Retinoic acid receptors (RARs) act as ligand-dependent transcriptional regulators. When bound to ligands, RARs activate transcription by binding as heterodimers to the retinoic acid response elements (RARE) found in the promoter regions of the target genes. In their unbound form, RARs repress transcription of their target genes. RARs are involved in various biological processes, including limb bud development, skeletal growth, and matrix homeostasis. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]

OR5BP1P Gene

olfactory receptor, family 5, subfamily BP, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPY4R Gene

neuropeptide Y receptor Y4

OR7E90P Gene

olfactory receptor, family 7, subfamily E, member 90 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GABRB1 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 1

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, beta 1 subunit. It is mapped to chromosome 4p12 in a cluster comprised of genes encoding alpha 4, alpha 2 and gamma 1 subunits of the GABA A receptor. Alteration of this gene is implicated in the pathogenetics of schizophrenia. [provided by RefSeq, Jul 2008]

GABRB3 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 3

This gene encodes a member of the ligand-gated ionic channel family. The encoded protein is one the subunits of a multi-subunit chloride channel that serves as the receptor for gamma-aminobutyric acid, a major inhibitory neurotransmitter of the mammalian nervous system. This gene is located on the long arm of chromosome 15 in a cluster with two other genes encoding related subunits of the family. This gene may be associated with the pathogenesis of several disorders including Angelman syndrome, Prader-Willi syndrome, nonsyndromic orofacial clefts, epilepsy and autism. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2013]

OPRK1 Gene

opioid receptor, kappa 1

OR56A4 Gene

olfactory receptor, family 56, subfamily A, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR56A3 Gene

olfactory receptor, family 56, subfamily A, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR56A1 Gene

olfactory receptor, family 56, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10D1P Gene

olfactory receptor, family 10, subfamily D, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10R1P Gene

olfactory receptor, family 10, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OXGR1 Gene

oxoglutarate (alpha-ketoglutarate) receptor 1

TRAJ16 Gene

T cell receptor alpha joining 16

TRAJ17 Gene

T cell receptor alpha joining 17

TRAJ14 Gene

T cell receptor alpha joining 14

TRAJ15 Gene

T cell receptor alpha joining 15

TRAJ12 Gene

T cell receptor alpha joining 12

TRAJ13 Gene

T cell receptor alpha joining 13

TRAJ10 Gene

T cell receptor alpha joining 10

TRAJ11 Gene

T cell receptor alpha joining 11

TRAJ18 Gene

T cell receptor alpha joining 18

TRAJ19 Gene

T cell receptor alpha joining 19 (non-functional)

OR10J4 Gene

olfactory receptor, family 10, subfamily J, member 4 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J5 Gene

olfactory receptor, family 10, subfamily J, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J1 Gene

olfactory receptor, family 10, subfamily J, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J3 Gene

olfactory receptor, family 10, subfamily J, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRIN1 Gene

glutamate receptor, ionotropic, N-methyl D-aspartate 1

The protein encoded by this gene is a critical subunit of N-methyl-D-aspartate receptors, members of the glutamate receptor channel superfamily which are heteromeric protein complexes with multiple subunits arranged to form a ligand-gated ion channel. These subunits play a key role in the plasticity of synapses, which is believed to underlie memory and learning. Cell-specific factors are thought to control expression of different isoforms, possibly contributing to the functional diversity of the subunits. Alternatively spliced transcript variants have been described. [provided by RefSeq, Jul 2008]

GRINA Gene

glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (glutamate binding)

LOC100421880 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100421887 Gene

olfactory receptor, family 2, subfamily W, member 3 pseudogene

LOC100421885 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418675 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418674 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418676 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

LRPAP1 Gene

low density lipoprotein receptor-related protein associated protein 1

This gene encodes a protein that interacts with the low density lipoprotein (LDL) receptor-related protein and facilitates its proper folding and localization by preventing the binding of ligands. Mutations in this gene have been identified in individuals with myopia 23. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

OR6P1 Gene

olfactory receptor, family 6, subfamily P, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R76P Gene

vomeronasal 1 receptor 76 pseudogene

OR7E122P Gene

olfactory receptor, family 7, subfamily E, member 122 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A19P Gene

olfactory receptor, family 4, subfamily A, member 19 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

APLNR Gene

apelin receptor

This gene encodes a member of the G protein-coupled receptor gene family. The encoded protein is related to the angiotensin receptor, but is actually an apelin receptor that inhibits adenylate cyclase activity and plays a counter-regulatory role against the pressure action of angiotensin II by exerting hypertensive effect. It functions in the cardiovascular and central nervous systems, in glucose metabolism, in embryonic and tumor angiogenesis and as a human immunodeficiency virus (HIV-1) coreceptor. Two transcript variants resulting from alternative splicing have been identified. [provided by RefSeq, Jul 2009]

KIR2DS5 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

1060P11.3 Gene

killer cell immunoglobulin-like receptor, three domains, pseudogene

KIR2DS2 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene represents a haplotype-specific family member that encodes a protein with a short cytoplasmic tail. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2014]

LOC100422604 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2 pseudogene

IL9RP1 Gene

interleukin 9 receptor pseudogene 1

IL9RP2 Gene

interleukin 9 receptor pseudogene 2

IL9RP3 Gene

interleukin 9 receptor pseudogene 3

CSF2RB Gene

colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)

The protein encoded by this gene is the common beta chain of the high affinity receptor for IL-3, IL-5 and CSF. Defects in this gene have been reported to be associated with protein alveolar proteinosis (PAP). [provided by RefSeq, Jul 2008]

CSF2RA Gene

colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage)

The protein encoded by this gene is the alpha subunit of the heterodimeric receptor for colony stimulating factor 2, a cytokine which controls the production, differentiation, and function of granulocytes and macrophages. The encoded protein is a member of the cytokine family of receptors. This gene is found in the pseudoautosomal region (PAR) of the X and Y chromosomes. Multiple transcript variants encoding different isoforms have been found for this gene, with some of the isoforms being membrane-bound and others being soluble. [provided by RefSeq, Jul 2008]

OR8U9 Gene

olfactory receptor, family 8, subfamily U, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8U8 Gene

olfactory receptor, family 8, subfamily U, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NRBF2P4 Gene

nuclear receptor binding factor 2 pseudogene 4

OR8U1 Gene

olfactory receptor, family 8, subfamily U, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51R1P Gene

olfactory receptor, family 51, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CALCRL Gene

calcitonin receptor-like

OLR1 Gene

oxidized low density lipoprotein (lectin-like) receptor 1

This gene encodes a low density lipoprotein receptor that belongs to the C-type lectin superfamily. This gene is regulated through the cyclic AMP signaling pathway. The encoded protein binds, internalizes and degrades oxidized low-density lipoprotein. This protein may be involved in the regulation of Fas-induced apoptosis. This protein may play a role as a scavenger receptor. Mutations of this gene have been associated with atherosclerosis, risk of myocardial infarction, and may modify the risk of Alzheimer's disease. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Feb 2010]

OGFRL1 Gene

opioid growth factor receptor-like 1

IL4R Gene

interleukin 4 receptor

This gene encodes the alpha chain of the interleukin-4 receptor, a type I transmembrane protein that can bind interleukin 4 and interleukin 13 to regulate IgE production. The encoded protein also can bind interleukin 4 to promote differentiation of Th2 cells. A soluble form of the encoded protein can be produced by proteolysis of the membrane-bound protein, and this soluble form can inhibit IL4-mediated cell proliferation and IL5 upregulation by T-cells. Allelic variations in this gene have been associated with atopy, a condition that can manifest itself as allergic rhinitis, sinusitus, asthma, or eczema. Polymorphisms in this gene are also associated with resistance to human immunodeficiency virus type-1 infection. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Apr 2012]

GRASP Gene

GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein

This gene encodes a protein that functions as a molecular scaffold, linking receptors, including group 1 metabotropic glutamate receptors, to neuronal proteins. The encoded protein contains conserved domains, including a leucine zipper sequence, PDZ domain and a C-terminal PDZ-binding motif. Alternately spliced transcript variants have been observed for this gene.[provided by RefSeq, Dec 2012]

LOC100421965 Gene

olfactory receptor, family 5, subfamily R, member 1 pseudogene

LOC100421964 Gene

olfactory receptor, family 9, subfamily G, member 9 pseudogene

LOC100421967 Gene

olfactory receptor, family 9, subfamily I, member 1 pseudogene

LOC100421961 Gene

olfactory receptor, family 8, subfamily I, member 2 pseudogene

LOC100421960 Gene

olfactory receptor, family 8, subfamily J, member 3 pseudogene

LOC100421963 Gene

olfactory receptor, family 5, subfamily M, member 3 pseudogene

LOC100421968 Gene

olfactory receptor, family 5, subfamily B, member 3 pseudogene

OR51H1 Gene

olfactory receptor, family 51, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R16P Gene

vomeronasal 2 receptor 16 pseudogene

OR7E55P Gene

olfactory receptor, family 7, subfamily E, member 55 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51V1 Gene

olfactory receptor, family 51, subfamily V, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LDLR Gene

low density lipoprotein receptor

The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. Low density lipoprotein (LDL) is normally bound at the cell membrane and taken into the cell ending up in lysosomes where the protein is degraded and the cholesterol is made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation of cholesterol ester synthesis takes place. Mutations in this gene cause the autosomal dominant disorder, familial hypercholesterolemia. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Sep 2010]

OR2A41P Gene

olfactory receptor, family 2, subfamily A, member 41 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52L1 Gene

olfactory receptor, family 52, subfamily L, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B9P Gene

olfactory receptor, family 8, subfamily B, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBJ2-2P Gene

T cell receptor beta joining 2-2P (non-functional)

OR5T1 Gene

olfactory receptor, family 5, subfamily T, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5T3 Gene

olfactory receptor, family 5, subfamily T, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5T2 Gene

olfactory receptor, family 5, subfamily T, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105369446 Gene

mitochondrial import receptor subunit TOM20 homolog pseudogene

TRBV11-3 Gene

T cell receptor beta variable 11-3

TRBV11-1 Gene

T cell receptor beta variable 11-1

IL17REL Gene

interleukin 17 receptor E-like

FLVCR2 Gene

feline leukemia virus subgroup C cellular receptor family, member 2

This gene encodes a member of the major facilitator superfamily. The encoded transmembrane protein is a calcium transporter. Unlike the related protein feline leukemia virus subgroup C receptor 1, the protein encoded by this locus does not bind to feline leukemia virus subgroup C envelope protein. The encoded protein may play a role in development of brain vascular endothelial cells, as mutations at this locus have been associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome. Alternatively spliced transcript variants have been described.[provided by RefSeq, Aug 2010]

FLVCR1 Gene

feline leukemia virus subgroup C cellular receptor 1

This gene encodes a member of the major facilitator superfamily of transporter proteins. The encoded protein is a heme transporter that may play a critical role in erythropoiesis by protecting developing erythroid cells from heme toxicity. This gene may play a role in posterior column ataxia with retinitis pigmentosa and the hematological disorder Diamond-Blackfan syndrome. [provided by RefSeq, Jan 2011]

LOC650293 Gene

seven transmembrane helix receptor

INSR Gene

insulin receptor

After removal of the precursor signal peptide, the insulin receptor precursor is post-translationally cleaved into two chains (alpha and beta) that are covalently linked. Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

OR51C1P Gene

olfactory receptor, family 51, subfamily C, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M13P Gene

olfactory receptor, family 5, subfamily M, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADRBK1 Gene

adrenergic, beta, receptor kinase 1

The product of this gene phosphorylates the beta-2-adrenergic receptor and appears to mediate agonist-specific desensitization observed at high agonist concentrations. This protein is an ubiquitous cytosolic enzyme that specifically phosphorylates the activated form of the beta-adrenergic and related G-protein-coupled receptors. Abnormal coupling of beta-adrenergic receptor to G protein is involved in the pathogenesis of the failing heart. [provided by RefSeq, Jul 2008]

ADRBK2 Gene

adrenergic, beta, receptor kinase 2

The beta-adrenergic receptor kinase specifically phosphorylates the agonist-occupied form of the beta-adrenergic and related G protein-coupled receptors. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with beta adrenergic receptor kinase 1, with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of receptor kinases which may serve broadly to regulate receptor function. [provided by RefSeq, Jul 2008]

LOC100422046 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422045 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

C1DP2 Gene

C1D nuclear receptor corepressor pseudogene 2

DEAR Gene

dual endothelin-1(VEGFsp)/angiotensin II receptor pseudogene

OR5P4P Gene

olfactory receptor, family 5, subfamily P, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TBXA1R Gene

thromboxane A1 receptor

EDNRA Gene

endothelin receptor type A

This gene encodes the receptor for endothelin-1, a peptide that plays a role in potent and long-lasting vasoconstriction. This receptor associates with guanine-nucleotide-binding (G) proteins, and this coupling activates a phosphatidylinositol-calcium second messenger system. Polymorphisms in this gene have been linked to migraine headache resistance. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

EDNRB Gene

endothelin receptor type B

The protein encoded by this gene is a G protein-coupled receptor which activates a phosphatidylinositol-calcium second messenger system. Its ligand, endothelin, consists of a family of three potent vasoactive peptides: ET1, ET2, and ET3. Studies suggest that the multigenic disorder, Hirschsprung disease type 2, is due to mutations in the endothelin receptor type B gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2011]

TRAV20 Gene

T cell receptor alpha variable 20

NR3C1P1 Gene

nuclear receptor subfamily 3, group C, member 1 pseudogene 1

LOC100421894 Gene

exportin, tRNA (nuclear export receptor for tRNAs) pseudogene

LOC100420339 Gene

opioid growth factor receptor pseudogene

PTPRZ2 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 2

PTPRZ1 Gene

protein tyrosine phosphatase, receptor-type, Z polypeptide 1

This gene encodes a member of the receptor protein tyrosine phosphatase family. Expression of this gene is restricted to the central nervous system (CNS), and it may be involved in the regulation of specific developmental processes in the CNS. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, May 2011]

OR2P1P Gene

olfactory receptor, family 2, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52J2P Gene

olfactory receptor, family 52, subfamily J, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRIP6 Gene

thyroid hormone receptor interactor 6

This gene is a member of the zyxin family and encodes a protein with three LIM zinc-binding domains. This protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner and it regulates LPA-induced cell migration. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized. [provided by RefSeq, Jul 2008]

BMX Gene

BMX non-receptor tyrosine kinase

This gene encodes a non-receptor tyrosine kinase belonging to the Tec kinase family. The protein contains a PH-like domain, which mediates membrane targeting by binding to phosphatidylinositol 3,4,5-triphosphate (PIP3), and a SH2 domain that binds to tyrosine-phosphorylated proteins and functions in signal transduction. The protein is implicated in several signal transduction pathways including the Stat pathway, and regulates differentiation and tumorigenicity of several types of cancer cells. Multiple alternatively spliced variants, encoding the same protein, have been identified.[provided by RefSeq, Sep 2009]

OR5B17 Gene

olfactory receptor, family 5, subfamily B, member 17

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4G2P Gene

olfactory receptor, family 4, subfamily G, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NSD1 Gene

nuclear receptor binding SET domain protein 1

This gene encodes a protein containing a SET domain, 2 LXXLL motifs, 3 nuclear translocation signals (NLSs), 4 plant homeodomain (PHD) finger regions, and a proline-rich region. The encoded protein enhances androgen receptor (AR) transactivation, and this enhancement can be increased further in the presence of other androgen receptor associated coregulators. This protein may act as a nucleus-localized, basic transcriptional factor and also as a bifunctional transcriptional regulator. Mutations of this gene have been associated with Sotos syndrome and Weaver syndrome. One version of childhood acute myeloid leukemia is the result of a cryptic translocation with the breakpoints occurring within nuclear receptor-binding Su-var, enhancer of zeste, and trithorax domain protein 1 on chromosome 5 and nucleoporin, 98-kd on chromosome 11. Two transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

OR7E155P Gene

olfactory receptor, family 7, subfamily E, member 155 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6X1 Gene

olfactory receptor, family 6, subfamily X, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A11P Gene

olfactory receptor, family 4, subfamily A, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C75 Gene

olfactory receptor, family 6, subfamily C, member 75

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C74 Gene

olfactory receptor, family 6, subfamily C, member 74

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NCR3LG1 Gene

natural killer cell cytotoxicity receptor 3 ligand 1

B7H6 belongs to the B7 family (see MIM 605402) and is selectively expressed on tumor cells. Interaction of B7H6 with NKp30 (NCR3; MIM 611550) results in natural killer (NK) cell activation and cytotoxicity (Brandt et al., 2009 [PubMed 19528259]).[supplied by OMIM, Jan 2011]

AXL Gene

AXL receptor tyrosine kinase

The protein encoded by this gene is a member of the Tyro3-Axl-Mer (TAM) receptor tyrosine kinase subfamily. The encoded protein possesses an extracellular domain which is composed of two immunoglobulin-like motifs at the N-terminal, followed by two fibronectin type-III motifs. It transduces signals from the extracellular matrix into the cytoplasm by binding to the vitamin K-dependent protein growth arrest-specific 6 (Gas6). This gene may be involved in several cellular functions including growth, migration, aggregation and anti-inflammation in multiple cell types. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jul 2013]

OR6C7P Gene

olfactory receptor, family 6, subfamily C, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KIR3DL1 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR3DL2 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jun 2011]

KIR3DL3 Gene

killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. [provided by RefSeq, Jul 2008]

IL13RA2 Gene

interleukin 13 receptor, alpha 2

The protein encoded by this gene is closely related to Il13RA1, a subuint of the interleukin 13 receptor complex. This protein binds IL13 with high affinity, but lacks cytoplasmic domain, and does not appear to function as a signal mediator. It is reported to play a role in the internalization of IL13. [provided by RefSeq, Jul 2008]

IL13RA1 Gene

interleukin 13 receptor, alpha 1

The protein encoded by this gene is a subunit of the interleukin 13 receptor. This subunit forms a receptor complex with IL4 receptor alpha, a subunit shared by IL13 and IL4 receptors. This subunit serves as a primary IL13-binding subunit of the IL13 receptor, and may also be a component of IL4 receptors. This protein has been shown to bind tyrosine kinase TYK2, and thus may mediate the signaling processes that lead to the activation of JAK1, STAT3 and STAT6 induced by IL13 and IL4. [provided by RefSeq, Jul 2008]

SIGMAR1 Gene

sigma non-opioid intracellular receptor 1

This gene encodes a receptor protein that interacts with a variety of psychotomimetic drugs, including cocaine and amphetamines. The receptor is believed to play an important role in the cellular functions of various tissues associated with the endocrine, immune, and nervous systems. As indicated by its previous name, opioid receptor sigma 1 (OPRS1), the product of this gene was erroneously thought to function as an opioid receptor; it is now thought to be a non-opioid receptor. Mutations in this gene has been associated with juvenile amyotrophic lateral sclerosis 16. Alternative splicing of this gene results in transcript variants encoding distinct isoforms. [provided by RefSeq, Aug 2013]

OR2T10 Gene

olfactory receptor, family 2, subfamily T, member 10

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T11 Gene

olfactory receptor, family 2, subfamily T, member 11 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T12 Gene

olfactory receptor, family 2, subfamily T, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R84P Gene

vomeronasal 1 receptor 84 pseudogene

OR7G2 Gene

olfactory receptor, family 7, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7G3 Gene

olfactory receptor, family 7, subfamily G, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7G1 Gene

olfactory receptor, family 7, subfamily G, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BQ1P Gene

olfactory receptor, family 5, subfamily BQ, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ZP1 Gene

zona pellucida glycoprotein 1 (sperm receptor)

The zona pellucida is an extracellular matrix that surrounds the oocyte and early embryo. It is composed primarily of three or four glycoproteins with various functions during fertilization and preimplantation development. The protein encoded by this gene ensures the structural integrity of the zona pellucida. Mutations in this gene are a cause of oocyte maturation defect and infertility. [provided by RefSeq, May 2014]

ZP3 Gene

zona pellucida glycoprotein 3 (sperm receptor)

The zona pellucida is an extracellular matrix that surrounds the oocyte and early embryo. It is composed primarily of three or four glycoproteins with various functions during fertilization and preimplantation development. The protein encoded by this gene is a structural component of the zona pellucida and functions in primary binding and induction of the sperm acrosome reaction. The nascent protein contains a N-terminal signal peptide sequence, a conserved ZP domain, a C-terminal consensus furin cleavage site, and a transmembrane domain. It is hypothesized that furin cleavage results in release of the mature protein from the plasma membrane for subsequent incorporation into the zona pellucida matrix. However, the requirement for furin cleavage in this process remains controversial based on mouse studies. A variation in the last exon of this gene has previously served as the basis for an additional ZP3 locus; however, sequence and literature review reveals that there is only one full-length ZP3 locus in the human genome. Another locus encoding a bipartite transcript designated POMZP3 contains a duplication of the last four exons of ZP3, including the above described variation, and maps closely to this gene. [provided by RefSeq, Jul 2008]

ZP2 Gene

zona pellucida glycoprotein 2 (sperm receptor)

The zona pellucida is an extracellular matrix that surrounds the oocyte and early embryo. It is composed of three glycoproteins with various functions during fertilization and preimplantation development. The glycosylated mature peptide is one of the structural components of the zona pellucida and functions in secondary binding and penetration of acrosome-reacted spermatozoa. Female mice lacking this gene do not form a stable zona matrix and are sterile. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

OR9Q2 Gene

olfactory receptor, family 9, subfamily Q, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9Q1 Gene

olfactory receptor, family 9, subfamily Q, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4R3P Gene

olfactory receptor, family 4, subfamily R, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LRP5L Gene

low density lipoprotein receptor-related protein 5-like

OR4A2P Gene

olfactory receptor, family 4, subfamily A, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR2A Gene

5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled

This gene encodes one of the receptors for serotonin, a neurotransmitter with many roles. Mutations in this gene are associated with susceptibility to schizophrenia and obsessive-compulsive disorder, and are also associated with response to the antidepressant citalopram in patients with major depressive disorder (MDD). MDD patients who also have a mutation in intron 2 of this gene show a significantly reduced response to citalopram as this antidepressant downregulates expression of this gene. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

HTR2C Gene

5-hydroxytryptamine (serotonin) receptor 2C, G protein-coupled

This gene encodes a seven-transmembrane G-protein-coupled receptor. The encoded protein responds to signaling through the neurotransmitter serotonin. The mRNA of this gene is subject to multiple RNA editing events, where adenosine residues encoded by the genome are converted to inosines. RNA editing is predicted to alter the structure of the second intracellular loop, thereby generating alternate protein forms with decreased ability to interact with G proteins. Abnormalities in RNA editing of this gene have been detected in victims of suicide that suffer from depression. In addition, naturally-occuring variation in the promoter and 5' non-coding and coding regions of this gene may show statistically-significant association with mental illness and behavioral disorders. Alternative splicing results in multiple different transcript variants. [provided by RefSeq, Jan 2015]

HTR2B Gene

5-hydroxytryptamine (serotonin) receptor 2B, G protein-coupled

This gene encodes one of the several different receptors for 5-hydroxytryptamine (serotonin) that belongs to the G-protein coupled receptor 1 family. Serotonin is a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. Serotonin receptors mediate many of the central and peripheral physiologic functions of serotonin, including regulation of cardiovascular functions and impulsive behavior. Population and family-based analyses of a minor allele (glutamine-to-stop substitution, designated Q20*) which blocks expression of this protein, and knockout studies in mice, suggest a role for this gene in impulsivity. However, other factors, such as elevated testosterone levels, may also be involved. [provided by RefSeq, Oct 2011]

P2RX7 Gene

purinergic receptor P2X, ligand gated ion channel, 7

The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel and is responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to large molecules. Activation of this nuclear receptor by ATP in the cytoplasm may be a mechanism by which cellular activity can be coupled to changes in gene expression. Multiple alternatively spliced variants have been identified, most of which fit nonsense-mediated decay (NMD) criteria. [provided by RefSeq, Jul 2010]

MET Gene

MET proto-oncogene, receptor tyrosine kinase

The proto-oncogene MET product is the hepatocyte growth factor receptor and encodes tyrosine-kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce the alpha and beta subunits, which are disulfide linked to form the mature receptor. Various mutations in the MET gene are associated with papillary renal carcinoma. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LILRP1 Gene

leukocyte immunoglobulin-like receptor pseudogene 1

LILRP2 Gene

leukocyte immunoglobulin-like receptor pseudogene 2

TRBV24-1 Gene

T cell receptor beta variable 24-1

OR52T1P Gene

olfactory receptor, family 52, subfamily T, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8R1P Gene

olfactory receptor, family 8, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AE1P Gene

olfactory receptor, family 10, subfamily AE, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GABRQ Gene

gamma-aminobutyric acid (GABA) A receptor, theta

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes the theta subunit of the GABA A receptor. The gene is mapped to chromosome Xq28 in a cluster of genes including those that encode the alpha 3 and epsilon subunits of the GABA A receptor. This gene location is also the candidate region of two different neurologic diseases: early-onset parkinsonism (Waisman syndrome) and X-linked mental retardation (MRX3). [provided by RefSeq, Nov 2009]

GABRP Gene

gamma-aminobutyric acid (GABA) A receptor, pi

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. The subunit encoded by this gene is expressed in several non-neuronal tissues including the uterus and ovaries. This subunit can assemble with known GABA A receptor subunits, and the presence of this subunit alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

GABRE Gene

gamma-aminobutyric acid (GABA) A receptor, epsilon

The product of this gene belongs to the ligand-gated ionic channel (TC 1.A.9) family. It encodes the gamma-aminobutyric acid (GABA) A receptor which is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes an epsilon subunit. It is mapped to chromosome Xq28 in a cluster comprised of genes encoding alpha 3, beta 4 and theta subunits of the same receptor. Alternatively spliced transcript variants have been identified, but only one is thought to encode a protein. [provided by RefSeq, Oct 2008]

GABRD Gene

gamma-aminobutyric acid (GABA) A receptor, delta

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. The GABA-A receptor is generally pentameric and there are five types of subunits: alpha, beta, gamma, delta, and rho. This gene encodes the delta subunit. Mutations in this gene have been associated with susceptibility to generalized epilepsy with febrile seizures, type 5. Alternatively spliced transcript variants have been described for this gene, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

NGFR Gene

nerve growth factor receptor

Nerve growth factor receptor contains an extracellular domain containing four 40-amino acid repeats with 6 cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155-amino acid cytoplasmic domain. The cysteine-rich region contains the nerve growth factor binding domain. [provided by RefSeq, Jul 2008]

LOC100418651 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC105369284 Gene

D(1B) dopamine receptor-like

OR3A1 Gene

olfactory receptor, family 3, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR3A2 Gene

olfactory receptor, family 3, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR3A3 Gene

olfactory receptor, family 3, subfamily A, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRIA3 Gene

glutamate receptor, ionotropic, AMPA 3

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes composed of multiple subunits, arranged to form ligand-gated ion channels. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. The subunit encoded by this gene belongs to a family of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate)-sensitive glutamate receptors, and is subject to RNA editing (AGA->GGA; R->G). Alternative splicing at this locus results in different isoforms, which may vary in their signal transduction properties. [provided by RefSeq, Jul 2008]

OR8H1 Gene

olfactory receptor, family 8, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8H2 Gene

olfactory receptor, family 8, subfamily H, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8H3 Gene

olfactory receptor, family 8, subfamily H, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7H2P Gene

olfactory receptor, family 7, subfamily H, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CHRFAM7A Gene

CHRNA7 (cholinergic receptor, nicotinic, alpha 7, exons 5-10) and FAM7A (family with sequence similarity 7A, exons A-E) fusion

The nicotinic acetylcholine receptors (nAChRs) are members of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. The family member CHRNA7, which is located on chromosome 15 in a region associated with several neuropsychiatric disorders, is partially duplicated and forms a hybrid with a novel gene from the family with sequence similarity 7 (FAM7A). Alternative splicing has been observed, and two variants exist, for this hybrid gene. The N-terminally truncated products predicted by the largest open reading frames for each variant would lack the majority of the neurotransmitter-gated ion-channel ligand binding domain but retain the transmembrane region that forms the ion channel. Although current evidence supports transcription of this hybrid gene, translation of the nicotinic acetylcholine receptor-like protein-encoding open reading frames has not been confirmed. [provided by RefSeq, Jul 2008]

OR51P1P Gene

olfactory receptor, family 51, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R77P Gene

vomeronasal 1 receptor 77 pseudogene

VN1R64P Gene

vomeronasal 1 receptor 64 pseudogene

OR1F12 Gene

olfactory receptor, family 1, subfamily F, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R39P Gene

vomeronasal 1 receptor 39 pseudogene

ACVR2A Gene

activin A receptor, type IIA

This gene encodes a receptor that mediates the functions of activins, which are members of the transforming growth factor-beta (TGF-beta) superfamily involved in diverse biological processes. The encoded protein is a transmembrane serine-threonine kinase receptor which mediates signaling by forming heterodimeric complexes with various combinations of type I and type II receptors and ligands in a cell-specific manner. The encoded type II receptor is primarily involved in ligand-binding and includes an extracellular ligand-binding domain, a transmembrane domain and a cytoplasmic serine-threonine kinase domain. This gene may be associated with susceptibility to preeclampsia, a pregnancy-related disease which can result in maternal and fetal morbidity and mortality. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, Jun 2013]

ACVR2B Gene

activin A receptor, type IIB

Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively active kinases. This gene encodes activin A type IIB receptor, which displays a 3- to 4-fold higher affinity for the ligand than activin A type II receptor. [provided by RefSeq, Jul 2008]

RORC Gene

RAR-related orphan receptor C

The protein encoded by this gene is a DNA-binding transcription factor and is a member of the NR1 subfamily of nuclear hormone receptors. The specific functions of this protein are not known; however, studies of a similar gene in mice have shown that this gene may be essential for lymphoid organogenesis and may play an important regulatory role in thymopoiesis. In addition, studies in mice suggest that the protein encoded by this gene may inhibit the expression of Fas ligand and IL2. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

RORB Gene

RAR-related orphan receptor B

The protein encoded by this gene is a member of the NR1 subfamily of nuclear hormone receptors. It is a DNA-binding protein that can bind as a monomer or as a homodimer to hormone response elements upstream of several genes to enhance the expression of those genes. The encoded protein has been shown to interact with NM23-2, a nucleoside diphosphate kinase involved in organogenesis and differentiation, and to help regulate the expression of some genes involved in circadian rhythm. [provided by RefSeq, Feb 2014]

RORA Gene

RAR-related orphan receptor A

The protein encoded by this gene is a member of the NR1 subfamily of nuclear hormone receptors. It can bind as a monomer or as a homodimer to hormone response elements upstream of several genes to enhance the expression of those genes. The encoded protein has been shown to interact with NM23-2, a nucleoside diphosphate kinase involved in organogenesis and differentiation, as well as with NM23-1, the product of a tumor metastasis suppressor candidate gene. Also, it has been shown to aid in the transcriptional regulation of some genes involved in circadian rhythm. Four transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Feb 2014]

FRS3 Gene

fibroblast growth factor receptor substrate 3

This gene encodes a substrate for the fibroblast growth factor receptor. The encoded protein is found in the peripheral plasma membrane and links fibroblast growth factor receptor stimulation to activators of Ras. The encoded protein down-regulates extracellular regulated kinase 2 through direct binding. [provided by RefSeq, Jul 2013]

FRS2 Gene

fibroblast growth factor receptor substrate 2

OR5L1 Gene

olfactory receptor, family 5, subfamily L, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5L2 Gene

olfactory receptor, family 5, subfamily L, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPN3 Gene

protein tyrosine phosphatase, non-receptor type 3

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. P97, a cell cycle regulator involved in a variety of membrane related functions, has been shown to be a substrate of this PTP. This PTP was also found to interact with, and be regulated by adaptor protein 14-3-3 beta. Several alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2009]

OR9L1P Gene

olfactory receptor, family 9, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR50 Gene

G protein-coupled receptor 50

This gene product belongs to the G-protein coupled receptor 1 family. Even though this protein shares similarity with the melatonin receptors, it does not bind melatonin, however, it inhibits melatonin receptor 1A function through heterodimerization. Polymorphic variants of this gene have been associated with bipolar affective disorder in women. [provided by RefSeq, Jan 2010]

OR4B1 Gene

olfactory receptor, family 4, subfamily B, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HCAR3 Gene

hydroxycarboxylic acid receptor 3

HCAR2 Gene

hydroxycarboxylic acid receptor 2

HCAR1 Gene

hydroxycarboxylic acid receptor 1

G protein-coupled receptors (GPCRs, or GPRs), such as GPR81, contain 7 transmembrane domains and transduce extracellular signals through heterotrimeric G proteins.[supplied by OMIM, Feb 2005]

LOC102725035 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

OR4K16P Gene

olfactory receptor, family 4, subfamily K, member 16 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR14K1 Gene

olfactory receptor, family 14, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1B1 Gene

olfactory receptor, family 1, subfamily B, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LSR Gene

lipolysis stimulated lipoprotein receptor

VN2R20P Gene

vomeronasal 2 receptor 20 pseudogene

VN1R56P Gene

vomeronasal 1 receptor 56 pseudogene

OR52B5P Gene

olfactory receptor, family 52, subfamily B, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R103P Gene

vomeronasal 1 receptor 103 pseudogene

OR3A5P Gene

olfactory receptor, family 3, subfamily A, member 5 pseudogene

PDGFRB Gene

platelet-derived growth factor receptor, beta polypeptide

This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. This gene is flanked on chromosome 5 by the genes for granulocyte-macrophage colony-stimulating factor and macrophage-colony stimulating factor receptor; all three genes may be implicated in the 5-q syndrome. A translocation between chromosomes 5 and 12, that fuses this gene to that of the translocation, ETV6, leukemia gene, results in chronic myeloproliferative disorder with eosinophilia. [provided by RefSeq, Jul 2008]

PDGFRA Gene

platelet-derived growth factor receptor, alpha polypeptide

This gene encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. These growth factors are mitogens for cells of mesenchymal origin. The identity of the growth factor bound to a receptor monomer determines whether the functional receptor is a homodimer or a heterodimer, composed of both platelet-derived growth factor receptor alpha and beta polypeptides. Studies suggest that this gene plays a role in organ development, wound healing, and tumor progression. Mutations in this gene have been associated with idiopathic hypereosinophilic syndrome, somatic and familial gastrointestinal stromal tumors, and a variety of other cancers. [provided by RefSeq, Mar 2012]

PDGFRL Gene

platelet-derived growth factor receptor-like

This gene encodes a protein with significant sequence similarity to the ligand binding domain of platelet-derived growth factor receptor beta. Mutations in this gene, or deletion of a chromosomal segment containing this gene, are associated with sporadic hepatocellular carcinomas, colorectal cancers, and non-small cell lung cancers. This suggests this gene product may function as a tumor suppressor. [provided by RefSeq, Jul 2008]

OR13A1 Gene

olfactory receptor, family 13, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

F2R Gene

coagulation factor II (thrombin) receptor

Coagulation factor II receptor is a 7-transmembrane receptor involved in the regulation of thrombotic response. Proteolytic cleavage leads to the activation of the receptor. F2R is a G-protein coupled receptor family member. [provided by RefSeq, Jul 2008]

NTSR2 Gene

neurotensin receptor 2

The protein encoded by this gene belongs to the G protein-coupled receptor family that activate a phosphatidylinositol-calcium second messenger system. Binding and pharmacological studies demonstrate that this receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. However, unlike NT1 receptor, this gene recognizes, with high affinity, levocabastine, a histamine H1 receptor antagonist previously shown to compete with neurotensin for low-affinity binding sites in brain. These activities suggest that this receptor may be of physiological importance and that a natural agonist for the receptor may exist. [provided by RefSeq, Jul 2008]

NTSR1 Gene

neurotensin receptor 1 (high affinity)

Neurotensin receptor 1 belongs to the large superfamily of G-protein coupled receptors. NTSR1 mediates the multiple functions of neurotensin, such as hypotension, hyperglycemia, hypothermia, antinociception, and regulation of intestinal motility and secretion. [provided by RefSeq, Jul 2008]

TRBV10-2 Gene

T cell receptor beta variable 10-2

TRBV10-3 Gene

T cell receptor beta variable 10-3

TRBV10-1 Gene

T cell receptor beta variable 10-1(gene/pseudogene)

OR11J6P Gene

olfactory receptor, family 11, subfamily J, member 6 pseudogene

OR4D10 Gene

olfactory receptor, family 4, subfamily D, member 10

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D11 Gene

olfactory receptor, family 4, subfamily D, member 11

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HAVCR1P2 Gene

hepatitis A virus cellular receptor 1 pseudogene 2

IL1RAP Gene

interleukin 1 receptor accessory protein

Interleukin 1 induces synthesis of acute phase and proinflammatory proteins during infection, tissue damage, or stress, by forming a complex at the cell membrane with an interleukin 1 receptor and an accessory protein. This gene encodes the interleukin 1 receptor accessory protein. The protein is a necessary part of the interleukin 1 receptor complex which initiates signalling events that result in the activation of interleukin 1-responsive genes. Alternative splicing of this gene results in two transcript variants encoding two different isoforms, one membrane-bound and one soluble. The ratio of soluble to membrane-bound forms increases during acute-phase induction or stress. [provided by RefSeq, Nov 2009]

VN2R6P Gene

vomeronasal 2 receptor 6 pseudogene

OR55B1P Gene

olfactory receptor, family 55, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C48P Gene

olfactory receptor, family 4, subfamily C, member 48 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TREML5P Gene

triggering receptor expressed on myeloid cells-like 5, pseudogene

FZD1 Gene

frizzled class receptor 1

Members of the 'frizzled' gene family encode 7-transmembrane domain proteins that are receptors for Wnt signaling proteins. The FZD1 protein contains a signal peptide, a cysteine-rich domain in the N-terminal extracellular region, 7 transmembrane domains, and a C-terminal PDZ domain-binding motif. The FZD1 transcript is expressed in various tissues. [provided by RefSeq, Jul 2008]

FZD2 Gene

frizzled class receptor 2

This intronless gene is a member of the frizzled gene family. Members of this family encode seven-transmembrane domain proteins that are receptors for the wingless type MMTV integration site family of signaling proteins. This gene encodes a protein that is coupled to the beta-catenin canonical signaling pathway. Competition between the wingless-type MMTV integration site family, member 3A and wingless-type MMTV integration site family, member 5A gene products for binding of this protein is thought to regulate the beta-catenin-dependent and -independent pathways. [provided by RefSeq, Dec 2010]

FZD3 Gene

frizzled class receptor 3

This gene is a member of the frizzled gene family. Members of this family encode seven-transmembrane domain proteins that are receptors for the wingless type MMTV integration site family of signaling proteins. Most frizzled receptors are coupled to the beta-catenin canonical signaling pathway. The function of this protein is unknown, although it may play a role in mammalian hair follicle development. Alternative splicing results in multiple transcript variants. This gene is a susceptibility locus for schizophrenia. [provided by RefSeq, Dec 2010]

FZD4 Gene

frizzled class receptor 4

This gene is a member of the frizzled gene family. Members of this family encode seven-transmembrane domain proteins that are receptors for the Wingless type MMTV integration site family of signaling proteins. Most frizzled receptors are coupled to the beta-catenin canonical signaling pathway. This protein may play a role as a positive regulator of the Wingless type MMTV integration site signaling pathway. A transcript variant retaining intronic sequence and encoding a shorter isoform has been described, however, its expression is not supported by other experimental evidence. [provided by RefSeq, Jul 2008]

FZD5 Gene

frizzled class receptor 5

Members of the 'frizzled' gene family encode 7-transmembrane domain proteins that are receptors for Wnt signaling proteins. The FZD5 protein is believed to be the receptor for the Wnt5A ligand. [provided by RefSeq, Jul 2008]

FZD6 Gene

frizzled class receptor 6

This gene represents a member of the 'frizzled' gene family, which encode 7-transmembrane domain proteins that are receptors for Wnt signaling proteins. The protein encoded by this family member contains a signal peptide, a cysteine-rich domain in the N-terminal extracellular region, and seven transmembrane domains, but unlike other family members, this protein does not contain a C-terminal PDZ domain-binding motif. This protein functions as a negative regulator of the canonical Wnt/beta-catenin signaling cascade, thereby inhibiting the processes that trigger oncogenic transformation, cell proliferation, and inhibition of apoptosis. Alternative splicing results in multiple transcript variants, some of which do not encode a protein with a predicted signal peptide.[provided by RefSeq, Aug 2011]

FZD7 Gene

frizzled class receptor 7

Members of the 'frizzled' gene family encode 7-transmembrane domain proteins that are receptors for Wnt signaling proteins. The FZD7 protein contains an N-terminal signal sequence, 10 cysteine residues typical of the cysteine-rich extracellular domain of Fz family members, 7 putative transmembrane domains, and an intracellular C-terminal tail with a PDZ domain-binding motif. FZD7 gene expression may downregulate APC function and enhance beta-catenin-mediated signals in poorly differentiated human esophageal carcinomas. [provided by RefSeq, Jul 2008]

FZD8 Gene

frizzled class receptor 8

This intronless gene is a member of the frizzled gene family. Members of this family encode seven-transmembrane domain proteins that are receptors for the Wingless type MMTV integration site family of signaling proteins. Most frizzled receptors are coupled to the beta-catenin canonical signaling pathway. This gene is highly expressed in two human cancer cell lines, indicating that it may play a role in several types of cancer. The crystal structure of the extracellular cysteine-rich domain of a similar mouse protein has been determined. [provided by RefSeq, Jul 2008]

FZD9 Gene

frizzled class receptor 9

Members of the 'frizzled' gene family encode 7-transmembrane domain proteins that are receptors for Wnt signaling proteins. The FZD9 gene is located within the Williams syndrome common deletion region of chromosome 7, and heterozygous deletion of the FZD9 gene may contribute to the Williams syndrome phenotype. FZD9 is expressed predominantly in brain, testis, eye, skeletal muscle, and kidney. [provided by RefSeq, Jul 2008]

OR10W1 Gene

olfactory receptor, family 10, subfamily W, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AMFR Gene

autocrine motility factor receptor, E3 ubiquitin protein ligase

This locus encodes a glycosylated transmembrane receptor. Its ligand, autocrine motility factor, is a tumor motility-stimulating protein secreted by tumor cells. The encoded receptor is also a member of the E3 ubiquitin ligase family of proteins. It catalyzes ubiquitination and endoplasmic reticulum-associated degradation of specific proteins. [provided by RefSeq, Feb 2012]

LOC100422495 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) pseudogene

OR7E1P Gene

olfactory receptor, family 7, subfamily E, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9I3P Gene

olfactory receptor, family 9, subfamily I, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CSF3R Gene

colony stimulating factor 3 receptor (granulocyte)

The protein encoded by this gene is the receptor for colony stimulating factor 3, a cytokine that controls the production, differentiation, and function of granulocytes. The encoded protein, which is a member of the family of cytokine receptors, may also function in some cell surface adhesion or recognition processes. Alternatively spliced transcript variants have been described. Mutations in this gene are a cause of Kostmann syndrome, also known as severe congenital neutropenia. [provided by RefSeq, Aug 2010]

LOC102725023 Gene

killer cell immunoglobulin-like receptor 2DS3 allele 0020101

LOC105379861 Gene

neuropeptide Y receptor type 4

PTGDR Gene

prostaglandin D2 receptor (DP)

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) superfamily. The receptors are seven-pass transmembrane proteins that respond to extracellular cues and activate intracellular signal transduction pathways. This protein is reported to be a receptor for prostaglandin D2, which is a mediator of allergic inflammation and allergic airway inflammation in asthma. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

LOC102723613 Gene

olfactory receptor 11G2-like

VN1R15P Gene

vomeronasal 1 receptor 15 pseudogene

OR7G15P Gene

olfactory receptor, family 7, subfamily G, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CXCR2P1 Gene

chemokine (C-X-C motif) receptor 2 pseudogene 1

LOC440683 Gene

seven transmembrane helix receptor

LOC100286746 Gene

GABA(A) receptor-associated protein-like 2 pseudogene

OR2Q1P Gene

olfactory receptor, family 2, subfamily Q, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AD1P Gene

olfactory receptor, family 2, subfamily AD, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105370722 Gene

olfactory receptor 4S2-like

OR10V3P Gene

olfactory receptor, family 10, subfamily V, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105375809 Gene

platelet endothelial aggregation receptor 1-like

VN1R51P Gene

vomeronasal 1 receptor 51 pseudogene

MC5R Gene

melanocortin 5 receptor

This gene encodes a member of the seven-pass transmembrane G protein-coupled melanocortin receptor protein family that stimulate cAMP signal transduction. The encoded protein is a receptor for melanocyte-stimulating hormone and adrenocorticotropic hormone and is suggested to play a role in sebum generation. [provided by RefSeq, Jun 2010]

LPAR2 Gene

lysophosphatidic acid receptor 2

This gene encodes a member of family I of the G protein-coupled receptors, as well as the EDG family of proteins. This protein functions as a lysophosphatidic acid (LPA) receptor and contributes to Ca2+ mobilization, a critical cellular response to LPA in cells, through association with Gi and Gq proteins. An alternative splice variant has been described but its full length sequence has not been determined. [provided by RefSeq, Jul 2008]

LPAR3 Gene

lysophosphatidic acid receptor 3

This gene encodes a member of the G protein-coupled receptor family, as well as the EDG family of proteins. This protein functions as a cellular receptor for lysophosphatidic acid and mediates lysophosphatidic acid-evoked calcium mobilization. This receptor couples predominantly to G(q/11) alpha proteins. [provided by RefSeq, Jul 2008]

LPAR6 Gene

lysophosphatidic acid receptor 6

The protein encoded by this gene belongs to the family of G-protein coupled receptors, that are preferentially activated by adenosine and uridine nucleotides. This gene aligns with an internal intron of the retinoblastoma susceptibility gene in the reverse orientation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2009]

LPAR4 Gene

lysophosphatidic acid receptor 4

This gene encodes a member of the lysophosphatidic acid receptor family. It may also be related to the P2Y receptors, a family of receptors that bind purine and pyrimidine nucleotides and are coupled to G proteins. The encoded protein may play a role in monocytic differentiation. [provided by RefSeq, Feb 2009]

LPAR5 Gene

lysophosphatidic acid receptor 5

This gene encodes a member of the rhodopsin class of G protein-coupled transmembrane receptors. This protein transmits extracellular signals from lysophosphatidic acid to cells through heterotrimeric G proteins and mediates numerous cellular processes. Many G protein receptors serve as targets for pharmaceutical drugs. Transcript variants of this gene have been described.[provided by RefSeq, Dec 2008]

ACKR4 Gene

atypical chemokine receptor 4

The protein encoded by this gene is a member of the G protein-coupled receptor family, and is a receptor for C-C type chemokines. This receptor has been shown to bind dendritic cell- and T cell-activated chemokines including CCL19/ELC, CCL21/SLC, and CCL25/TECK. A pseudogene of this gene is found on chromosome 6. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2013]

LOC100422123 Gene

olfactory receptor, family 51, subfamily I, member 1 pseudogene

LOC100422124 Gene

olfactory receptor, family 51, subfamily B, member 4 pseudogene

ACKR1 Gene

atypical chemokine receptor 1 (Duffy blood group)

The protein encoded by this gene is a glycosylated membrane protein and a non-specific receptor for several chemokines. The encoded protein is the receptor for the human malarial parasites Plasmodium vivax and Plasmodium knowlesi. Polymorphisms in this gene are the basis of the Duffy blood group system. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

ACKR2 Gene

atypical chemokine receptor 2

This gene encodes a beta chemokine receptor, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. Chemokines and their receptor-mediated signal transduction are critical for the recruitment of effector immune cells to the inflammation site. This gene is expressed in a range of tissues and hemopoietic cells. The expression of this receptor in lymphatic endothelial cells and overexpression in vascular tumors suggested its function in chemokine-driven recirculation of leukocytes and possible chemokine effects on the development and growth of vascular tumors. This receptor appears to bind the majority of beta-chemokine family members; however, its specific function remains unknown. This gene is mapped to chromosome 3p21.3, a region that includes a cluster of chemokine receptor genes. [provided by RefSeq, Jul 2008]

ACKR3 Gene

atypical chemokine receptor 3

This gene encodes a member of the G-protein coupled receptor family. Although this protein was earlier thought to be a receptor for vasoactive intestinal peptide (VIP), it is now considered to be an orphan receptor, in that its endogenous ligand has not been identified. The protein is also a coreceptor for human immunodeficiency viruses (HIV). Translocations involving this gene and HMGA2 on chromosome 12 have been observed in lipomas. [provided by RefSeq, Jul 2008]

GPER1 Gene

G protein-coupled estrogen receptor 1

This gene is a member of the G-protein coupled receptor 1 family and encodes a multi-pass membrane protein that localizes to the endoplasmic reticulum. The protein binds estrogen, resulting in intracellular calcium mobilization and synthesis of phosphatidylinositol 3,4,5-trisphosphate in the nucleus. This protein therefore plays a role in the rapid nongenomic signaling events widely observed following stimulation of cells and tissues with estrogen. Alternate transcriptional splice variants which encode the same protein have been characterized. [provided by RefSeq, Jul 2008]

OR10N1P Gene

olfactory receptor, family 10, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

C5AR2 Gene

complement component 5a receptor 2

This gene encodes a G-protein coupled receptor 1 family member involved in the complement system of the innate immune response. Unlike classical G-protein coupled receptors, the encoded protein does not associate with intracellular G-proteins. It may instead modulate signal transduction through the beta-arrestin pathway, and may alternatively act as a decoy receptor. This gene may be involved in coronary artery disease and in the pathogenesis of sepsis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2012]

C5AR1 Gene

complement component 5a receptor 1

RGR Gene

retinal G protein coupled receptor

This gene encodes a putative retinal G-protein coupled receptor. The gene is a member of the opsin subfamily of the 7 transmembrane, G-protein coupled receptor 1 family. Like other opsins which bind retinaldehyde, it contains a conserved lysine residue in the seventh transmembrane domain. The protein acts as a photoisomerase to catalyze the conversion of all-trans-retinal to 11-cis-retinal. The reverse isomerization occurs with rhodopsin in retinal photoreceptor cells. The protein is exclusively expressed in tissue adjacent to retinal photoreceptor cells, the retinal pigment epithelium and Mueller cells. This gene may be associated with autosomal recessive and autosomal dominant retinitis pigmentosa (arRP and adRP, respectively). Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

VN1R31P Gene

vomeronasal 1 receptor 31 pseudogene

OR51F1 Gene

olfactory receptor, family 51, subfamily F, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51F2 Gene

olfactory receptor, family 51, subfamily F, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRGJP2 Gene

T cell receptor gamma joining P2

TRGJP1 Gene

T cell receptor gamma joining P1

OR7E154P Gene

olfactory receptor, family 7, subfamily E, member 154 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SSR4P1 Gene

signal sequence receptor, delta pseudogene 1

NRBP2 Gene

nuclear receptor binding protein 2

NRBP1 Gene

nuclear receptor binding protein 1

PAQR8 Gene

progestin and adipoQ receptor family member VIII

OR13E1P Gene

olfactory receptor, family 13, subfamily E, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PAQR3 Gene

progestin and adipoQ receptor family member III

PAQR5 Gene

progestin and adipoQ receptor family member V

PAQR4 Gene

progestin and adipoQ receptor family member IV

PAQR7 Gene

progestin and adipoQ receptor family member VII

PAQR6 Gene

progestin and adipoQ receptor family member VI

LOC100422038 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

ADGRF1 Gene

adhesion G protein-coupled receptor F1

ADGRF2 Gene

adhesion G protein-coupled receptor F2

ADGRF3 Gene

adhesion G protein-coupled receptor F3

ADGRF4 Gene

adhesion G protein-coupled receptor F4

ADGRF5 Gene

adhesion G protein-coupled receptor F5

NR2E1 Gene

nuclear receptor subfamily 2, group E, member 1

NR2E3 Gene

nuclear receptor subfamily 2, group E, member 3

This protein is part of a large family of nuclear receptor transcription factors involved in signaling pathways. Nuclear receptors have been shown to regulate pathways involved in embryonic development, as well as in maintenance of proper cell function in adults. Members of this family are characterized by discrete domains that function in DNA and ligand binding. This gene encodes a retinal nuclear receptor that is a ligand-dependent transcription factor. Defects in this gene are a cause of enhanced S cone syndrome. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

OR2A20P Gene

olfactory receptor, family 2, subfamily A, member 20 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C7P Gene

olfactory receptor, family 4, subfamily C, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2V1 Gene

olfactory receptor, family 2, subfamily V, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AP1 Gene

olfactory receptor, family 2, subfamily AP, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV25-1 Gene

T cell receptor beta variable 25-1

OR5M6P Gene

olfactory receptor, family 5, subfamily M, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR45 Gene

G protein-coupled receptor 45

This intronless gene encodes a member of the G protein-coupled receptor (GPCR) family. Members of this protein family contain seven putative transmembrane domains and may mediate signaling processes to the interior of the cell via activation of heterotrimeric G proteins. This protein may function in the central nervous system. [provided by RefSeq, Jul 2008]

GPR42 Gene

G protein-coupled receptor 42 (gene/pseudogene)

GHR Gene

growth hormone receptor

This gene encodes a member of the type I cytokine receptor family, which is a transmembrane receptor for growth hormone. Binding of growth hormone to the receptor leads to receptor dimerization and the activation of an intra- and intercellular signal transduction pathway leading to growth. Mutations in this gene have been associated with Laron syndrome, also known as the growth hormone insensitivity syndrome (GHIS), a disorder characterized by short stature. In humans and rabbits, but not rodents, growth hormone binding protein (GHBP) is generated by proteolytic cleavage of the extracellular ligand-binding domain from the mature growth hormone receptor protein. Multiple alternatively spliced transcript variants have been found for this gene.[provided by RefSeq, Jun 2011]

PTPN2P2 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 2

LOC100421642 Gene

zona pellucida glycoprotein 3 (sperm receptor) pseudogene

OR1J2 Gene

olfactory receptor, family 1, subfamily J, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1J1 Gene

olfactory receptor, family 1, subfamily J, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5S1P Gene

olfactory receptor, family 5, subfamily S, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CHRM5 Gene

cholinergic receptor, muscarinic 5

The muscarinic cholinergic receptors belong to a larger family of G protein-coupled receptors. The functional diversity of these receptors is defined by the binding of acetylcholine and includes cellular responses such as adenylate cyclase inhibition, phosphoinositide degeneration, and potassium channel mediation. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor are unknown; however, stimulation of this receptor is known to increase cyclic AMP levels. [provided by RefSeq, Jul 2008]

CHRM4 Gene

cholinergic receptor, muscarinic 4

The muscarinic cholinergic receptors belong to a larger family of G protein-coupled receptors. The functional diversity of these receptors is defined by the binding of acetylcholine and includes cellular responses such as adenylate cyclase inhibition, phosphoinositide degeneration, and potassium channel mediation. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The clinical implications of this receptor are unknown; however, mouse studies link its function to adenylyl cyclase inhibition. [provided by RefSeq, Jul 2008]

CHRM3 Gene

cholinergic receptor, muscarinic 3

The muscarinic cholinergic receptors belong to a larger family of G protein-coupled receptors. The functional diversity of these receptors is defined by the binding of acetylcholine and includes cellular responses such as adenylate cyclase inhibition, phosphoinositide degeneration, and potassium channel mediation. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The muscarinic cholinergic receptor 3 controls smooth muscle contraction and its stimulation causes secretion of glandular tissue. [provided by RefSeq, Jul 2008]

CHRM2 Gene

cholinergic receptor, muscarinic 2

The muscarinic cholinergic receptors belong to a larger family of G protein-coupled receptors. The functional diversity of these receptors is defined by the binding of acetylcholine to these receptors and includes cellular responses such as adenylate cyclase inhibition, phosphoinositide degeneration, and potassium channel mediation. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The muscarinic cholinergic receptor 2 is involved in mediation of bradycardia and a decrease in cardiac contractility. Multiple alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Jul 2008]

CHRM1 Gene

cholinergic receptor, muscarinic 1

The muscarinic cholinergic receptors belong to a larger family of G protein-coupled receptors. The functional diversity of these receptors is defined by the binding of acetylcholine and includes cellular responses such as adenylate cyclase inhibition, phosphoinositide degeneration, and potassium channel mediation. Muscarinic receptors influence many effects of acetylcholine in the central and peripheral nervous system. The muscarinic cholinergic receptor 1 is involved in mediation of vagally-induced bronchoconstriction and in the acid secretion of the gastrointestinal tract. The gene encoding this receptor is localized to 11q13. [provided by RefSeq, Jul 2008]

OR10D5P Gene

olfactory receptor, family 10, subfamily D, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LDLRAD4 Gene

low density lipoprotein receptor class A domain containing 4

LOC100421986 Gene

olfactory receptor, family 5, subfamily P, member 3 pseudogene

OR8G3P Gene

olfactory receptor, family 8, subfamily G, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AP2 Gene

olfactory receptor, family 5, subfamily AP, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL36RN Gene

interleukin 36 receptor antagonist

The protein encoded by this gene is a member of the interleukin 1 cytokine family. This cytokine was shown to specifically inhibit the activation of NF-kappaB induced by interleukin 1 family, member 6 (IL1F6). This gene and eight other interleukin 1 family genes form a cytokine gene cluster on chromosome 2. Two alternatively spliced transcript variants encoding the same protein have been reported. [provided by RefSeq, Jul 2008]

OR9M1P Gene

olfactory receptor, family 9, subfamily M, member 1, pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422127 Gene

olfactory receptor, family 52, subfamily H, member 1 pseudogene

LOC100422186 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

GPR141 Gene

G protein-coupled receptor 141

GPR141 is a member of the rhodopsin family of G protein-coupled receptors (GPRs) (Fredriksson et al., 2003 [PubMed 14623098]).[supplied by OMIM, Mar 2008]

GPBAR1 Gene

G protein-coupled bile acid receptor 1

This gene encodes a member of the G protein-coupled receptor (GPCR) superfamily. This enzyme functions as a cell surface receptor for bile acids. Treatment of cells expressing this GPCR with bile acids induces the production of intracellular cAMP, activation of a MAP kinase signaling pathway, and internalization of the receptor. The receptor is implicated in the suppression of macrophage functions and regulation of energy homeostasis by bile acids. Alternative splicing results in multiple transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

OR56B4 Gene

olfactory receptor, family 56, subfamily B, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR56B1 Gene

olfactory receptor, family 56, subfamily B, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AK2 Gene

olfactory receptor, family 5, subfamily AK, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TNFRSF10C Gene

tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains an extracellular TRAIL-binding domain and a transmembrane domain, but no cytoplasmic death domain. This receptor is not capable of inducing apoptosis, and is thought to function as an antagonistic receptor that protects cells from TRAIL-induced apoptosis. This gene was found to be a p53-regulated DNA damage-inducible gene. The expression of this gene was detected in many normal tissues but not in most cancer cell lines, which may explain the specific sensitivity of cancer cells to the apoptosis-inducing activity of TRAIL. [provided by RefSeq, Jul 2008]

TNFRSF10B Gene

tumor necrosis factor receptor superfamily, member 10b

The protein encoded by this gene is a member of the TNF-receptor superfamily, and contains an intracellular death domain. This receptor can be activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL/APO-2L), and transduces an apoptosis signal. Studies with FADD-deficient mice suggested that FADD, a death domain containing adaptor protein, is required for the apoptosis mediated by this protein. Two transcript variants encoding different isoforms and one non-coding transcript have been found for this gene. [provided by RefSeq, Mar 2009]

TNFRSF10D Gene

tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains an extracellular TRAIL-binding domain, a transmembrane domain, and a truncated cytoplamic death domain. This receptor does not induce apoptosis, and has been shown to play an inhibitory role in TRAIL-induced cell apoptosis. [provided by RefSeq, Jul 2008]

OR14A16 Gene

olfactory receptor, family 14, subfamily A, member 16

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11G2 Gene

olfactory receptor, family 11, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV17 Gene

T cell receptor beta variable 17 (non-functional)

TRBV16 Gene

T cell receptor beta variable 16 (gene/pseudogene)

TRBV15 Gene

T cell receptor beta variable 15

TRBV14 Gene

T cell receptor beta variable 14

TRBV13 Gene

T cell receptor beta variable 13

TRBV19 Gene

T cell receptor beta variable 19

TRBV18 Gene

T cell receptor beta variable 18

LOC100421853 Gene

olfactory receptor, family 1, subfamily N, member 1 pseudogene

LOC100421852 Gene

olfactory receptor, family 2, subfamily K, member 2 pseudogene

TRDV1 Gene

T cell receptor delta variable 1

TRDV3 Gene

T cell receptor delta variable 3

TRDV2 Gene

T cell receptor delta variable 2

OR7E109P Gene

olfactory receptor, family 7, subfamily E, member 109 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11I1P Gene

olfactory receptor, family 11, subfamily I, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418669 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

OR11H13P Gene

olfactory receptor, family 11, subfamily H, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R48P Gene

vomeronasal 1 receptor 48 pseudogene

TRPC6P Gene

transient receptor potential cation channel, subfamily C, member 6 pseudogene

VN1R73P Gene

vomeronasal 1 receptor 73 pseudogene

OR13K1P Gene

olfactory receptor, family 13, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8I4P Gene

olfactory receptor, family 8, subfamily I, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C73P Gene

olfactory receptor, family 6, subfamily C, member 73 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105379534 Gene

proline-rich receptor-like protein kinase PERK2

TRPM8 Gene

transient receptor potential cation channel, subfamily M, member 8

TRPM4 Gene

transient receptor potential cation channel, subfamily M, member 4

The protein encoded by this gene is a calcium-activated nonselective ion channel that mediates transport of monovalent cations across membranes, thereby depolarizing the membrane. The activity of the encoded protein increases with increasing intracellular calcium concentration, but this channel does not transport calcium. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2010]

TRPM5 Gene

transient receptor potential cation channel, subfamily M, member 5

This gene encodes a member of the transient receptor potential (TRP) protein family, which is a diverse group of proteins with structural features typical of ion channels. This protein plays an important role in taste transduction, and has characteristics of a calcium-activated, non-selective cation channel that carries Na+, K+, and Cs+ ions equally well, but not Ca(2+) ions. It is activated by lower concentrations of intracellular Ca(2+), and inhibited by higher concentrations. It is also a highly temperature-sensitive, heat activated channel showing a steep increase of inward currents at temperatures between 15 and 35 degrees Celsius. This gene is located within the Beckwith-Wiedemann syndrome critical region-1 on chromosome 11p15.5, and has been shown to be imprinted, with exclusive expression from the paternal allele. [provided by RefSeq, Oct 2010]

TRPM6 Gene

transient receptor potential cation channel, subfamily M, member 6

This gene is predominantly expressed in the kidney and colon, and encodes a protein containing an ion channel domain and a protein kinase domain. It is crucial for magnesium homeostasis, and plays an essential role in epithelial magnesium transport and in the active magnesium absorption in the gut and kidney. Mutations in this gene are associated with hypomagnesemia with secondary hypocalcemia. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Apr 2010]

TRPM7 Gene

transient receptor potential cation channel, subfamily M, member 7

The protein encoded by this gene is both an ion channel and a serine/threonine protein kinase. The kinase activity is essential for the ion channel function, which serves to increase intracellular calcium levels and to help regulate magnesium ion homeostasis. Defects in this gene are a cause of amyotrophic lateral sclerosis-parkinsonism/dementia complex of Guam. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jul 2014]

TRPM1 Gene

transient receptor potential cation channel, subfamily M, member 1

This gene encodes a member of the transient receptor potential melastatin subfamily of transient receptor potential ion channels. The encoded protein is a calcium permeable cation channel that is expressed in melanocytes and may play a role in melanin synthesis. Specific mutations in this gene are the cause autosomal recessive complete congenital stationary night blindness-1C. The expression of this protein is inversely correlated with melanoma aggressiveness and as such it is used as a prognostic marker for melanoma metastasis. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Oct 2011]

TRPM2 Gene

transient receptor potential cation channel, subfamily M, member 2

The protein encoded by this gene is a calcium-permeable cation channel that is regulated by free intracellular ADP-ribose. The encoded protein is activated by oxidative stress and confers susceptibility to cell death. Several alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Jul 2008]

TRPM3 Gene

transient receptor potential cation channel, subfamily M, member 3

The product of this gene belongs to the family of transient receptor potential (TRP) channels. TRP channels are cation-selective channels important for cellular calcium signaling and homeostasis. The protein encoded by this gene mediates calcium entry, and this entry is potentiated by calcium store depletion. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

OR13Z2P Gene

olfactory receptor, family 13, subfamily Z, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F8P Gene

olfactory receptor, family 4, subfamily F, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC102723478 Gene

coxsackievirus and adenovirus receptor pseudogene

LOC101928948 Gene

scavenger receptor class F member 2-like

PTCRA Gene

pre T-cell antigen receptor alpha

The protein encoded by this gene is a single-pass type I membrane protein that is found in immmature but not mature T-cells. Along with TCRB and CD3 complex, the encoded protein forms the pre-T-cell receptor complex, which regulates early T-cell development. Four transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jul 2011]

RTN4RL1 Gene

reticulon 4 receptor-like 1

RTN4RL2 Gene

reticulon 4 receptor-like 2

TICAM1 Gene

toll-like receptor adaptor molecule 1

This gene encodes an adaptor protein containing a Toll/interleukin-1 receptor (TIR) homology domain, which is an intracellular signaling domain that mediates protein-protein interactions between the Toll-like receptors (TLRs) and signal-transduction components. This protein is involved in native immunity against invading pathogens. It specifically interacts with toll-like receptor 3, but not with other TLRs, and this association mediates dsRNA induction of interferon-beta through activation of nuclear factor kappa-B, during an antiviral immune response. [provided by RefSeq, Jan 2012]

TICAM2 Gene

toll-like receptor adaptor molecule 2

TIRP is a Toll/interleukin-1 receptor (IL1R; MIM 147810) (TIR) domain-containing adaptor protein involved in Toll receptor signaling (see TLR4; MIM 603030).[supplied by OMIM, Apr 2004]

IL6RP1 Gene

interleukin 6 receptor pseudogene 1

REEP1 Gene

receptor accessory protein 1

This gene encodes a mitochondrial protein that functions to enhance the cell surface expression of odorant receptors. Mutations in this gene cause spastic paraplegia autosomal dominant type 31, a neurodegenerative disorder. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2009]

REEP3 Gene

receptor accessory protein 3

REEP2 Gene

receptor accessory protein 2

This gene encodes a member of the receptor expression enhancing protein family. Studies of a related gene in mouse suggest that the encoded protein is found in the cell membrane and enhances the function of sweet taste receptors. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2012]

REEP5 Gene

receptor accessory protein 5

REEP4 Gene

receptor accessory protein 4

REEP6 Gene

receptor accessory protein 6

OR51A5P Gene

olfactory receptor, family 51, subfamily A, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBVAOR9-2 Gene

T cell receptor beta variable A/OR9-2 (pseudogene)

OR6U2P Gene

olfactory receptor, family 6, subfamily U, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV36DV7 Gene

T cell receptor alpha variable 36/delta variable 7

LOC100421958 Gene

olfactory receptor, family 8, subfamily K, member 5 pseudogene

LOC100421954 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421955 Gene

olfactory receptor, family 8, subfamily U, member 1 pseudogene

LOC100421956 Gene

olfactory receptor, family 5, subfamily F, member 1 pseudogene

LOC100421957 Gene

olfactory receptor, family 8, subfamily D, member 4 pseudogene

LOC100421950 Gene

olfactory receptor, family 7, subfamily C, member 1 pseudogene

LOC100421951 Gene

olfactory receptor, family 5, subfamily P, member 3 pseudogene

LOC100421953 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

KIR2DS4 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DS3 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DS1 Gene

killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

OR2H2 Gene

olfactory receptor, family 2, subfamily H, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2H1 Gene

olfactory receptor, family 2, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51Q1 Gene

olfactory receptor, family 51, subfamily Q, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G4 Gene

olfactory receptor, family 10, subfamily G, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R11P Gene

vomeronasal 2 receptor 11 pseudogene

IL10RA Gene

interleukin 10 receptor, alpha

The protein encoded by this gene is a receptor for interleukin 10. This protein is structurally related to interferon receptors. It has been shown to mediate the immunosuppressive signal of interleukin 10, and thus inhibits the synthesis of proinflammatory cytokines. This receptor is reported to promote survival of progenitor myeloid cells through the insulin receptor substrate-2/PI 3-kinase/AKT pathway. Activation of this receptor leads to tyrosine phosphorylation of JAK1 and TYK2 kinases. Two transcript variants, one protein-coding and the other not protein-coding, have been found for this gene. [provided by RefSeq, Jan 2009]

IL10RB Gene

interleukin 10 receptor, beta

The protein encoded by this gene belongs to the cytokine receptor family. It is an accessory chain essential for the active interleukin 10 receptor complex. Coexpression of this and IL10RA proteins has been shown to be required for IL10-induced signal transduction. This gene and three other interferon receptor genes, IFAR2, IFNAR1, and IFNGR2, form a class II cytokine receptor gene cluster located in a small region on chromosome 21. [provided by RefSeq, Jul 2008]

LOC100419811 Gene

interleukin 9 receptor pseudogene

LOC442263 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

LOC729497 Gene

nuclear receptor coactivator 4 pseudogene

CELSR3 Gene

cadherin, EGF LAG seven-pass G-type receptor 3

This gene belongs to the flamingo subfamily, which is included in the cadherin superfamily. The flamingo cadherins consist of nonclassic-type cadherins that do not interact with catenins. They are plasma membrane proteins containing seven epidermal growth factor-like repeats, nine cadherin domains and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic feature of their subfamily. The encoded protein may be involved in the regulation of contact-dependent neurite growth and may play a role in tumor formation. [provided by RefSeq, Jun 2013]

CELSR2 Gene

cadherin, EGF LAG seven-pass G-type receptor 2

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. The specific function of this particular member has not been determined. [provided by RefSeq, Jul 2008]

CELSR1 Gene

cadherin, EGF LAG seven-pass G-type receptor 1

The protein encoded by this gene is a member of the flamingo subfamily, part of the cadherin superfamily. The flamingo subfamily consists of nonclassic-type cadherins; a subpopulation that does not interact with catenins. The flamingo cadherins are located at the plasma membrane and have nine cadherin domains, seven epidermal growth factor-like repeats and two laminin A G-type repeats in their ectodomain. They also have seven transmembrane domains, a characteristic unique to this subfamily. It is postulated that these proteins are receptors involved in contact-mediated communication, with cadherin domains acting as homophilic binding regions and the EGF-like domains involved in cell adhesion and receptor-ligand interactions. This particular member is a developmentally regulated, neural-specific gene which plays an unspecified role in early embryogenesis. [provided by RefSeq, Jul 2008]

OR5G3 Gene

olfactory receptor, family 5, subfamily G, member 3 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCAR Gene

Fc fragment of IgA receptor

This gene is a member of the immunoglobulin gene superfamily and encodes a receptor for the Fc region of IgA. The receptor is a transmembrane glycoprotein present on the surface of myeloid lineage cells such as neutrophils, monocytes, macrophages, and eosinophils, where it mediates immunologic responses to pathogens. It interacts with IgA-opsonized targets and triggers several immunologic defense processes, including phagocytosis, antibody-dependent cell-mediated cytotoxicity, and stimulation of the release of inflammatory mediators. Multiple alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

OR52S1P Gene

olfactory receptor, family 52, subfamily S, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPN9 Gene

protein tyrosine phosphatase, non-receptor type 9

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an N-terminal domain that shares a significant similarity with yeast SEC14, which is a protein that has phosphatidylinositol transfer activity and is required for protein secretion through the Golgi complex in yeast. This PTP was found to be activated by polyphosphoinositide, and is thought to be involved in signaling events regulating phagocytosis. [provided by RefSeq, Jul 2008]

PTPN2 Gene

protein tyrosine phosphatase, non-receptor type 2

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Epidermal growth factor receptor and the adaptor protein Shc were reported to be substrates of this PTP, which suggested the roles in growth factor mediated cell signaling. Multiple alternatively spliced transcript variants encoding different isoforms have been found. Two highly related but distinctly processed pseudogenes that localize to chromosomes 1 and 13, respectively, have been reported. [provided by RefSeq, May 2011]

PTPN1 Gene

protein tyrosine phosphatase, non-receptor type 1

The protein encoded by this gene is the founding member of the protein tyrosine phosphatase (PTP) family, which was isolated and identified based on its enzymatic activity and amino acid sequence. PTPs catalyze the hydrolysis of the phosphate monoesters specifically on tyrosine residues. Members of the PTP family share a highly conserved catalytic motif, which is essential for the catalytic activity. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP has been shown to act as a negative regulator of insulin signaling by dephosphorylating the phosphotryosine residues of insulin receptor kinase. This PTP was also reported to dephosphorylate epidermal growth factor receptor kinase, as well as JAK2 and TYK2 kinases, which implicated the role of this PTP in cell growth control, and cell response to interferon stimulation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2013]

PTPN7 Gene

protein tyrosine phosphatase, non-receptor type 7

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This gene is preferentially expressed in a variety of hematopoietic cells, and is an early response gene in lymphokine stimulated cells. The non-catalytic N-terminus of this PTP can interact with MAP kinases and suppress the MAP kinase activities. This PTP was shown to be involved in the regulation of T cell antigen receptor (TCR) signaling, which was thought to function through dephosphorylating the molecules related to MAP kinase pathway. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Dec 2010]

PTPN6 Gene

protein tyrosine phosphatase, non-receptor type 6

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells. This PTP has been shown to interact with, and dephosphorylate a wide spectrum of phospho-proteins involved in hematopoietic cell signaling. Multiple alternatively spliced variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPN5 Gene

protein tyrosine phosphatase, non-receptor type 5 (striatum-enriched)

PTPN4 Gene

protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte)

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This protein contains a C-terminal PTP domain and an N-terminal domain homologous to the band 4.1 superfamily of cytoskeletal-associated proteins. This PTP has been shown to interact with glutamate receptor delta 2 and epsilon subunits, and is thought to play a role in signalling downstream of the glutamate receptors through tyrosine dephosphorylation. [provided by RefSeq, Jul 2008]

VN1R8P Gene

vomeronasal 1 receptor 8 pseudogene

OR5BJ1P Gene

olfactory receptor, family 5, subfamily BJ, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR4 Gene

5-hydroxytryptamine (serotonin) receptor 4, G protein-coupled

This gene is a member of the family of serotonin receptors, which are G protein coupled receptors that stimulate cAMP production in response to serotonin (5-hydroxytryptamine). The gene product is a glycosylated transmembrane protein that functions in both the peripheral and central nervous system to modulate the release of various neurotransmitters. Multiple transcript variants encoding proteins with distinct C-terminal sequences have been described. [provided by RefSeq, May 2010]

OR6K1P Gene

olfactory receptor, family 6, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AE1 Gene

olfactory receptor, family 2, subfamily AE, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AA1P Gene

olfactory receptor, family 10, subfamily AA, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R97P Gene

vomeronasal 1 receptor 97 pseudogene

LOC100422039 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422033 Gene

olfactory receptor, family 4, subfamily Q, member 3 pseudogene

LOC100422036 Gene

olfactory receptor, family 6, subfamily C, member 2 pseudogene

LOC100422034 Gene

olfactory receptor, family 6, subfamily A, member 2 pseudogene

LOC100422035 Gene

olfactory receptor, family 6, subfamily A, member 2 pseudogene

GABRG3 Gene

gamma-aminobutyric acid (GABA) A receptor, gamma 3

This gene encodes a gamma-aminobutyric acid (GABA) receptor. GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. GABA-A receptors are pentameric, consisting of proteins from several subunit classes: alpha, beta, gamma, delta and rho. The protein encoded by this gene is a gamma subunit, which contains the benzodiazepine binding site. Two transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Aug 2012]

GABRG2 Gene

gamma-aminobutyric acid (GABA) A receptor, gamma 2

This gene encodes a gamma-aminobutyric acid (GABA) receptor. GABA is the major inhibitory neurotransmitter in the mammlian brain, where it acts at GABA-A receptors, which are ligand-gated chloride channels. GABA-A receptors are pentameric, consisting of proteins from several subunit classes: alpha, beta, gamma, delta and rho. Mutations in this gene have been associated with epilepsy and febrile seizures. Multiple transcript variants encoding different isoforms have been identified for this gene. [provided by RefSeq, Jul 2008]

GABRG1 Gene

gamma-aminobutyric acid (GABA) A receptor, gamma 1

The protein encoded by this gene belongs to the ligand-gated ionic channel family. It is an integral membrane protein and plays an important role in inhibiting neurotransmission by binding to the benzodiazepine receptor and opening an integral chloride channel. This gene is clustered with three other family members on chromosome 4. [provided by RefSeq, Jul 2008]

OR7E37P Gene

olfactory receptor, family 7, subfamily E, member 37 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Mar 2011]

OR5AW1P Gene

olfactory receptor, family 5, subfamily AW, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AC2 Gene

olfactory receptor, family 5, subfamily AC, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AC1 Gene

olfactory receptor, family 5, subfamily AC, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9R1P Gene

olfactory receptor, family 9, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAJ49 Gene

T cell receptor alpha joining 49

TRAJ48 Gene

T cell receptor alpha joining 48

TRAJ41 Gene

T cell receptor alpha joining 41

TRAJ40 Gene

T cell receptor alpha joining 40

TRAJ43 Gene

T cell receptor alpha joining 43

TRAJ42 Gene

T cell receptor alpha joining 42

TRAJ45 Gene

T cell receptor alpha joining 45

TRAJ44 Gene

T cell receptor alpha joining 44

TRAJ47 Gene

T cell receptor alpha joining 47

TRAJ46 Gene

T cell receptor alpha joining 46

OR10G7 Gene

olfactory receptor, family 10, subfamily G, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G6 Gene

olfactory receptor, family 10, subfamily G, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G3 Gene

olfactory receptor, family 10, subfamily G, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G2 Gene

olfactory receptor, family 10, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G9 Gene

olfactory receptor, family 10, subfamily G, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10G8 Gene

olfactory receptor, family 10, subfamily G, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRIK1 Gene

glutamate receptor, ionotropic, kainate 1

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to the kainate family of glutamate receptors, which are composed of four subunits and function as ligand-activated ion channels. The subunit encoded by this gene is subject to RNA editing (CAG->CGG; Q->R) within the second transmembrane domain, which is thought to alter the properties of ion flow. Alternative splicing, resulting in transcript variants encoding different isoforms, has been noted for this gene. [provided by RefSeq, Jul 2008]

GRIK2 Gene

glutamate receptor, ionotropic, kainate 2

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to the kainate family of glutamate receptors, which are composed of four subunits and function as ligand-activated ion channels. The subunit encoded by this gene is subject to RNA editing at multiple sites within the first and second transmembrane domains, which is thought to alter the structure and function of the receptor complex. Alternatively spliced transcript variants encoding different isoforms have also been described for this gene. Mutations in this gene have been associated with autosomal recessive mental retardation. [provided by RefSeq, Jul 2008]

GRIK3 Gene

glutamate receptor, ionotropic, kainate 3

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to the kainate family of glutamate receptors, which are composed of four subunits and function as ligand-activated ion channels. It is not certain if the subunit encoded by this gene is subject to RNA editing as the other 2 family members (GRIK1 and GRIK2). A Ser310Ala polymorphism has been associated with schizophrenia, and there are conflicting reports of its association with the pathogenesis of delirium tremens in alcoholics. [provided by RefSeq, Jul 2008]

GRIK4 Gene

glutamate receptor, ionotropic, kainate 4

This gene encodes a protein that belongs to the glutamate-gated ionic channel family. Glutamate functions as the major excitatory neurotransmitter in the central nervous system through activation of ligand-gated ion channels and G protein-coupled membrane receptors. The protein encoded by this gene forms functional heteromeric kainate-preferring ionic channels with the subunits encoded by related gene family members. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2013]

GRIK5 Gene

glutamate receptor, ionotropic, kainate 5

This gene encodes a protein that belongs to the glutamate-gated ionic channel family. Glutamate functions as the major excitatory neurotransmitter in the central nervous system through activation of ligand-gated ion channels and G protein-coupled membrane receptors. The protein encoded by this gene forms functional heteromeric kainate-preferring ionic channels with the subunits encoded by related gene family members. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

GLRA1 Gene

glycine receptor, alpha 1

The protein encoded by this gene is a subunit of a pentameric inhibitory glycine receptor. The receptor mediates postsynaptic inhibition in the central nervous system. Defects in this gene are a cause of startle disease (STHE), also known as hereditary hyperekplexia or congenital stiff-person syndrome. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]

XCR1 Gene

chemokine (C motif) receptor 1

The protein encoded by this gene is a chemokine receptor belonging to the G protein-coupled receptor superfamily. The family members are characterized by the presence of 7 transmembrane domains and numerous conserved amino acids. This receptor is most closely related to RBS11 and the MIP1-alpha/RANTES receptor. It transduces a signal by increasing the intracellular calcium ions level. The viral macrophage inflammatory protein-II is an antagonist of this receptor and blocks signaling. Two alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

XPR1 Gene

xenotropic and polytropic retrovirus receptor 1

VN1R40P Gene

vomeronasal 1 receptor 40 pseudogene

FOLR3P1 Gene

folate receptor 3 (gamma) pseudogene 1

OR4A14P Gene

olfactory receptor, family 4, subfamily A, member 14 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E158P Gene

olfactory receptor, family 7, subfamily E, member 158 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CASR Gene

calcium-sensing receptor

The protein encoded by this gene is a G protein-coupled receptor that is expressed in the parathyroid hormone (PTH)-producing chief cells of the parathyroid gland, and the cells lining the kidney tubule. It senses small changes in circulating calcium concentration and couples this information to intracellular signaling pathways that modify PTH secretion or renal cation handling, thus this protein plays an essential role in maintaining mineral ion homeostasis. Mutations in this gene cause familial hypocalciuric hypercalcemia, familial, isolated hypoparathyroidism, and neonatal severe primary hyperparathyroidism. [provided by RefSeq, Jul 2008]

M6PR Gene

mannose-6-phosphate receptor (cation dependent)

This gene encodes a member of the P-type lectin family. P-type lectins play a critical role in lysosome function through the specific transport of mannose-6-phosphate-containing acid hydrolases from the Golgi complex to lysosomes. The encoded protein functions as a homodimer and requires divalent cations for ligand binding. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. A pseudogene of this gene is located on the long arm of chromosome X. [provided by RefSeq, May 2011]

LOC100421846 Gene

olfactory receptor, family 9, subfamily G, member 4 pseudogene

MST1R Gene

macrophage stimulating 1 receptor

This gene encodes a cell surface receptor for macrophage-stimulating protein (MSP) with tyrosine kinase activity. The mature form of this protein is a heterodimer of disulfide-linked alpha and beta subunits, generated by proteolytic cleavage of a single-chain precursor. The beta subunit undergoes tyrosine phosphorylation upon stimulation by MSP. This protein is expressed on the ciliated epithelia of the mucociliary transport apparatus of the lung, and together with MSP, thought to be involved in host defense. Alternatively spliced transcript variants encoding different isoforms with different structural and biochemical properties have been described (PMID:8816464). [provided by RefSeq, Oct 2011]

GRIP1 Gene

glutamate receptor interacting protein 1

This gene encodes a member of the glutamate receptor interacting protein family. The encoded scaffold protein binds to and mediates the trafficking and membrane organization of a number of transmembrane proteins. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, May 2010]

GRIP2 Gene

glutamate receptor interacting protein 2

TRGC1 Gene

T cell receptor gamma constant 1

TRGC2 Gene

T cell receptor gamma constant 2

LOC100288929 Gene

coxsackievirus and adenovirus receptor-like

BCAP31 Gene

B-cell receptor-associated protein 31

This gene encodes a member of the B-cell receptor associated protein 31 superfamily. The encoded protein is a multi-pass transmembrane protein of the endoplasmic reticulum that is involved in the anterograde transport of membrane proteins from the endoplasmic reticulum to the Golgi and in caspase 8-mediated apoptosis. Microdeletions in this gene are associated with contiguous ABCD1/DXS1375E deletion syndrome (CADDS), a neonatal disorder. Alternative splicing of this gene results in multiple transcript variants. Two related pseudogenes have been identified on chromosome 16. [provided by RefSeq, Jan 2012]

TAS2R43 Gene

taste receptor, type 2, member 43

TAS2R43 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Mar 2009]

TAS2R42 Gene

taste receptor, type 2, member 42

TAS2R41 Gene

taste receptor, type 2, member 41

TAS2R40 Gene

taste receptor, type 2, member 40

TAS2R46 Gene

taste receptor, type 2, member 46

TAS2R46 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Sep 2009]

TAS2R45 Gene

taste receptor, type 2, member 45

TRAF3IP1 Gene

TNF receptor-associated factor 3 interacting protein 1

OR4A7P Gene

olfactory receptor, family 4, subfamily A, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6R2P Gene

olfactory receptor, family 6, subfamily R, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPRC5D Gene

G protein-coupled receptor, class C, group 5, member D

The protein encoded by this gene is a member of the G protein-coupled receptor family; however, the specific function of this gene has not yet been determined. [provided by RefSeq, Jul 2008]

GPRC5A Gene

G protein-coupled receptor, class C, group 5, member A

This gene encodes a member of the type 3 G protein-coupling receptor family, characterized by the signature 7-transmembrane domain motif. The encoded protein may be involved in interaction between retinoid acid and G protein signalling pathways. Retinoic acid plays a critical role in development, cellular growth, and differentiation. This gene may play a role in embryonic development and epithelial cell differentiation. [provided by RefSeq, Jul 2008]

GPRC5C Gene

G protein-coupled receptor, class C, group 5, member C

The protein encoded by this gene is a member of the type 3 G protein-coupled receptor family. Members of this superfamily are characterized by a signature 7-transmembrane domain motif. The specific function of this protein is unknown; however, this protein may mediate the cellular effects of retinoic acid on the G protein signal transduction cascade. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

OR9G3P Gene

olfactory receptor, family 9, subfamily G, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C1P Gene

olfactory receptor, family 4, subfamily C, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421483 Gene

transforming growth factor, beta receptor 1 pseudogene

LOC100418662 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418663 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418661 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418666 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418664 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

LOC100418665 Gene

olfactory receptor, family 2, subfamily G, member 6 pseudogene

LOC100418668 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

GPR17 Gene

G protein-coupled receptor 17

OR8K1 Gene

olfactory receptor, family 8, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8K3 Gene

olfactory receptor, family 8, subfamily K, member 3 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1F2P Gene

olfactory receptor, family 1, subfamily F, member 2, pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRV1 Gene

adhesion G protein-coupled receptor V1

This gene encodes a member of the G-protein coupled receptor superfamily. The encoded protein contains a 7-transmembrane receptor domain, binds calcium and is expressed in the central nervous system. Mutations in this gene are associated with Usher syndrome 2 and familial febrile seizures. Several alternatively spliced transcripts have been described. [provided by RefSeq, Jul 2008]

OR51I1 Gene

olfactory receptor, family 51, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51I2 Gene

olfactory receptor, family 51, subfamily I, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R67P Gene

vomeronasal 1 receptor 67 pseudogene

OR52I2 Gene

olfactory receptor, family 52, subfamily I, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52I1 Gene

olfactory receptor, family 52, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AC1 Gene

olfactory receptor, family 10, subfamily AC, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR179 Gene

G protein-coupled receptor 179

This gene encodes a member of the glutamate receptor subfamily of G protein-coupled receptors. The encoded protein has an EGF-like calcium binding domain and a seven transmembrane domain in the N-terminal region of the protein. Mutations in this gene are associated with congenital stationary night blindness type 1E. [provided by RefSeq, Apr 2012]

GPR171 Gene

G protein-coupled receptor 171

GPR173 Gene

G protein-coupled receptor 173

This gene encodes a member of the G-protein coupled receptor 1 family. This protein contains 7 transmembrane domains and conserved cysteine residues. [provided by RefSeq, Nov 2009]

GPR174 Gene

G protein-coupled receptor 174

This gene encodes a protein belonging to the G protein-coupled receptor superfamily. These proteins are characterized by the presence of seven alpha-helical transmembrane domains, and they activate or interact with various endogenous or exogenous ligands, including neurotransmitters, hormones, and odorant and taste substances. This family member is classified as an orphan receptor because the cognate ligand has not been identified. [provided by RefSeq, Sep 2011]

GPR176 Gene

G protein-coupled receptor 176

Members of the G protein-coupled receptor family, such as GPR176, are cell surface receptors involved in responses to hormones, growth factors, and neurotransmitters (Hata et al., 1995 [PubMed 7893747]).[supplied by OMIM, Jul 2008]

RARRES2 Gene

retinoic acid receptor responder (tazarotene induced) 2

This gene encodes a secreted chemotactic protein that initiates chemotaxis via the ChemR23 G protein-coupled seven-transmembrane domain ligand. Expression of this gene is upregulated by the synthetic retinoid tazarotene and occurs in a wide variety of tissues. The active protein has several roles, including that as an adipokine and as an antimicrobial protein with activity against bacteria and fungi. [provided by RefSeq, Nov 2014]

RARRES3 Gene

retinoic acid receptor responder (tazarotene induced) 3

Retinoids exert biologic effects such as potent growth inhibitory and cell differentiation activities and are used in the treatment of hyperproliferative dermatological diseases. These effects are mediated by specific nuclear receptor proteins that are members of the steroid and thyroid hormone receptor superfamily of transcriptional regulators. RARRES1, RARRES2, and RARRES3 are genes whose expression is upregulated by the synthetic retinoid tazarotene. RARRES3 is thought act as a tumor suppressor or growth regulator. [provided by RefSeq, Jul 2008]

RARRES1 Gene

retinoic acid receptor responder (tazarotene induced) 1

This gene was identified as a retinoid acid (RA) receptor-responsive gene. It encodes a type 1 membrane protein. The expression of this gene is upregulated by tazarotene as well as by retinoic acid receptors. The expression of this gene is found to be downregulated in prostate cancer, which is caused by the methylation of its promoter and CpG island. Alternatively spliced transcript variant encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]

OR5I1 Gene

olfactory receptor, family 5, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7D1P Gene

olfactory receptor, family 7, subfamily D, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV38-2DV8 Gene

T cell receptor alpha variable 38-2/delta variable 8

LOC344593 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

OR7A15P Gene

olfactory receptor, family 7, subfamily A, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC102723333 Gene

retinoic acid receptor responder protein 2 pseudogene

OR4M2 Gene

olfactory receptor, family 4, subfamily M, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4M1 Gene

olfactory receptor, family 4, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SCTR Gene

secretin receptor

The protein encoded by this gene is a G protein-coupled receptor and belongs to the glucagon-VIP-secretin receptor family. It binds secretin which is the most potent regulator of pancreatic bicarbonate, electrolyte and volume secretion. Secretin and its receptor are suggested to be involved in pancreatic cancer and autism. [provided by RefSeq, Jul 2008]

OR11K1P Gene

olfactory receptor, family 11, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OXER1 Gene

oxoeicosanoid (OXE) receptor 1

OR4K11P Gene

olfactory receptor, family 4, subfamily K, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV6-4 Gene

T cell receptor beta variable 6-4

TRBV6-1 Gene

T cell receptor beta variable 6-1

HMMR Gene

hyaluronan-mediated motility receptor (RHAMM)

The protein encoded by this gene is involved in cell motility. It is expressed in breast tissue and together with other proteins, it forms a complex with BRCA1 and BRCA2, thus is potentially associated with higher risk of breast cancer. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Dec 2008]

OR5M14P Gene

olfactory receptor, family 5, subfamily M, member 14 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LTB4R Gene

leukotriene B4 receptor

EPS15 Gene

epidermal growth factor receptor pathway substrate 15

This gene encodes a protein that is part of the EGFR pathway. The protein is present at clatherin-coated pits and is involved in receptor-mediated endocytosis of EGF. Notably, this gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, May 2009]

OR14A2 Gene

olfactory receptor, family 14, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1G1 Gene

olfactory receptor, family 1, subfamily G, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

C1DP4 Gene

C1D nuclear receptor corepressor pseudogene 4

VIPR2 Gene

vasoactive intestinal peptide receptor 2

This gene encodes a receptor for vasoactive intestinal peptide, a small neuropeptide. Vasoactive intestinal peptide is involved in smooth muscle relaxation, exocrine and endocrine secretion, and water and ion flux in lung and intestinal epithelia. Its actions are effected through integral membrane receptors associated with a guanine nucleotide binding protein which activates adenylate cyclase. [provided by RefSeq, Aug 2011]

VIPR1 Gene

vasoactive intestinal peptide receptor 1

This gene encodes a receptor for vasoactive intestinal peptide, a small neuropeptide. Vasoactive intestinal peptide is involved in smooth muscle relaxation, exocrine and endocrine secretion, and water and ion flux in lung and intestinal epithelia. Its actions are effected through integral membrane receptors associated with a guanine nucleotide binding protein which activates adenylate cyclase. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

KLRAP1 Gene

killer cell lectin-like receptor subfamily A pseudogene 1

OR5BK1P Gene

olfactory receptor, family 5, subfamily BK, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R3P Gene

vomeronasal 2 receptor 3 pseudogene

OR10T2 Gene

olfactory receptor, family 10, subfamily T, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422135 Gene

olfactory receptor, family 4, subfamily C, member 46 pseudogene

GPRASP2 Gene

G protein-coupled receptor associated sorting protein 2

The protein encoded by this gene is a member of a family that regulates the activity of G protein-coupled receptors (GPCRs). The encoded protein has been shown to be capable of interacting with several GPCRs, including the M1 muscarinic acetylcholine receptor and the calcitonin receptor. Several transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, May 2010]

GPRASP1 Gene

G protein-coupled receptor associated sorting protein 1

This gene encodes a member of the GPRASP (G protein-coupled receptor associated sorting protein) family. The protein may modulate lysosomal sorting and functional down-regulation of a variety of G-protein coupled receptors. It targets receptors for degradation in lysosomes. The receptors interacting with this sorting protein include D2 dopamine receptor (DRD2), delta opioid receptor (OPRD1), beta-2 adrenergic receptor (ADRB2), D4 dopamine receptor (DRD4) and cannabinoid 1 receptor (CB1R). Multiple alternatively spliced transcript variants encoding the same protein have been identified. [provided by RefSeq, May 2010]

VN1R83P Gene

vomeronasal 1 receptor 83 pseudogene

OR8L1P Gene

olfactory receptor, family 8, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GIT1 Gene

G protein-coupled receptor kinase interacting ArfGAP 1

GIT2 Gene

G protein-coupled receptor kinase interacting ArfGAP 2

This gene encodes a member of the GIT protein family, which interact with G protein-coupled receptor kinases and possess ADP-ribosylation factor (ARF) GTPase-activating protein (GAP) activity. GIT proteins traffic between cytoplasmic complexes, focal adhesions, and the cell periphery, and interact with Pak interacting exchange factor beta (PIX) to form large oligomeric complexes that transiently recruit other proteins. GIT proteins regulate cytoskeletal dynamics and participate in receptor internalization and membrane trafficking. This gene has been shown to repress lamellipodial extension and focal adhesion turnover, and is thought to regulate cell motility. This gene undergoes extensive alternative splicing to generate multiple isoforms, but the full-length nature of some of these variants has not been determined. The various isoforms have functional differences, with respect to ARF GAP activity and to G protein-coupled receptor kinase 2 binding. [provided by RefSeq, Sep 2008]

HTR7P1 Gene

5-hydroxytryptamine (serotonin) receptor 7 pseudogene 1

OR7E85P Gene

olfactory receptor, family 7, subfamily E, member 85 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6B1 Gene

olfactory receptor, family 6, subfamily B, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6B2 Gene

olfactory receptor, family 6, subfamily B, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6B3 Gene

olfactory receptor, family 6, subfamily B, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R16P Gene

vomeronasal 1 receptor 16 pseudogene

DBI Gene

diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein)

This gene encodes diazepam binding inhibitor, a protein that is regulated by hormones and is involved in lipid metabolism and the displacement of beta-carbolines and benzodiazepines, which modulate signal transduction at type A gamma-aminobutyric acid receptors located in brain synapses. The protein is conserved from yeast to mammals, with the most highly conserved domain consisting of seven contiguous residues that constitute the hydrophobic binding site for medium- and long-chain acyl-Coenzyme A esters. Diazepam binding inhibitor is also known to mediate the feedback regulation of pancreatic secretion and the postprandial release of cholecystokinin, in addition to its role as a mediator in corticotropin-dependent adrenal steroidogenesis. Three pseudogenes located on chromosomes 6, 8 and 16 have been identified. Multiple transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

OR7E14P Gene

olfactory receptor, family 7, subfamily E, member 14 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105375807 Gene

ephrin type-B receptor 6-like

SSR1P1 Gene

signal sequence receptor, alpha pseudogene 1

CD36 Gene

CD36 molecule (thrombospondin receptor)

The protein encoded by this gene is the fourth major glycoprotein of the platelet surface and serves as a receptor for thrombospondin in platelets and various cell lines. Since thrombospondins are widely distributed proteins involved in a variety of adhesive processes, this protein may have important functions as a cell adhesion molecule. It binds to collagen, thrombospondin, anionic phospholipids and oxidized LDL. It directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes and it binds long chain fatty acids and may function in the transport and/or as a regulator of fatty acid transport. Mutations in this gene cause platelet glycoprotein deficiency. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Feb 2014]

OR52K3P Gene

olfactory receptor, family 52, subfamily K, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E38P Gene

olfactory receptor, family 7, subfamily E, member 38 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7A2P Gene

olfactory receptor, family 7, subfamily A, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9K2 Gene

olfactory receptor, family 9, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422177 Gene

olfactory receptor, family 10, subfamily Q, member 1 pseudogene

LOC100422176 Gene

olfactory receptor, family 4, subfamily D, member 11 pseudogene

LOC100422174 Gene

olfactory receptor, family 5, subfamily AK, member 2 pseudogene

LOC100422173 Gene

olfactory receptor, family 5, subfamily D, member 13 pseudogene

LOC100422171 Gene

olfactory receptor, family 4, subfamily A, member 15 pseudogene

LOC100422170 Gene

olfactory receptor, family 4, subfamily A, member 16 pseudogene

LOC100422178 Gene

olfactory receptor, family 10, subfamily Q, member 1 pseudogene

OR5D3P Gene

olfactory receptor, family 5, subfamily D, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCGR3A Gene

Fc fragment of IgG, low affinity IIIa, receptor (CD16a)

This gene encodes a receptor for the Fc portion of immunoglobulin G, and it is involved in the removal of antigen-antibody complexes from the circulation, as well as other other antibody-dependent responses. This gene (FCGR3A) is highly similar to another nearby gene (FCGR3B) located on chromosome 1. The receptor encoded by this gene is expressed on natural killer (NK) cells as an integral membrane glycoprotein anchored through a transmembrane peptide, whereas FCGR3B is expressed on polymorphonuclear neutrophils (PMN) where the receptor is anchored through a phosphatidylinositol (PI) linkage. Mutations in this gene have been linked to susceptibility to recurrent viral infections, susceptibility to systemic lupus erythematosus, and alloimmune neonatal neutropenia. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

FCGR3B Gene

Fc fragment of IgG, low affinity IIIb, receptor (CD16b)

The protein encoded by this gene is a low affinity receptor for the Fc region of gamma immunoglobulins (IgG). The encoded protein acts as a monomer and can bind either monomeric or aggregated IgG. This gene may function to capture immune complexes in the peripheral circulation. Several transcript variants encoding different isoforms have been found for this gene. A highly-similar gene encoding a related protein is also found on chromosome 1. [provided by RefSeq, Aug 2012]

VN1R36P Gene

vomeronasal 1 receptor 36 pseudogene

LOC100129526 Gene

protein tyrosine phosphatase, receptor type, D pseudogene

CCR10 Gene

chemokine (C-C motif) receptor 10

Chemokines are a group of small (approximately 8 to 14 kD), mostly basic, structurally related molecules that regulate cell trafficking of various types of leukocytes through interactions with a subset of 7-transmembrane, G protein-coupled receptors. Chemokines also play fundamental roles in the development, homeostasis, and function of the immune system, and they have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. Chemokines are divided into 2 major subfamilies, CXC and CC, based on the arrangement of the first 2 of the 4 conserved cysteine residues; the 2 cysteines are separated by a single amino acid in CXC chemokines and are adjacent in CC chemokines. CCR10 is the receptor for CCL27 (SCYA27; MIM 604833); CCR10-CCL27 interactions are involved in T cell-mediated skin inflammation (Homey et al., 2002 [PubMed 11821900]).[supplied by OMIM, Mar 2008]

OR51A4 Gene

olfactory receptor, family 51, subfamily A, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ANXA2R Gene

annexin A2 receptor

LOC390614 Gene

relaxin/insulin-like family peptide receptor 3 pseudogene

GPRC5B Gene

G protein-coupled receptor, class C, group 5, member B

This gene encodes a member of the type 3 G protein-coupled receptor family. Members of this superfamily are characterized by a signature 7-transmembrane domain motif. The encoded protein may modulate insulin secretion and increased protein expression is associated with type 2 diabetes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

OR52A1 Gene

olfactory receptor, family 52, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

EBAG9P1 Gene

estrogen receptor binding site associated, antigen, 9 pseudogene 1

LOC100418503 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418502 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418501 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418500 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418506 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418505 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418509 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418508 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

OR2W6P Gene

olfactory receptor, family 2, subfamily W, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAF1 Gene

TNF receptor-associated factor 1

The protein encoded by this gene is a member of the TNF receptor (TNFR) associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from various receptors of the TNFR superfamily. This protein and TRAF2 form a heterodimeric complex, which is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF2 also interacts with inhibitor-of-apoptosis proteins (IAPs), and thus mediates the anti-apoptotic signals from TNF receptors. The expression of this protein can be induced by Epstein-Barr virus (EBV). EBV infection membrane protein 1 (LMP1) is found to interact with this and other TRAF proteins; this interaction is thought to link LMP1-mediated B lymphocyte transformation to the signal transduction from TNFR family receptors. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

TRAF2 Gene

TNF receptor-associated factor 2

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from members of the TNF receptor superfamily. This protein directly interacts with TNF receptors, and forms a heterodimeric complex with TRAF1. This protein is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF1 interacts with the inhibitor-of-apoptosis proteins (IAPs), and functions as a mediator of the anti-apoptotic signals from TNF receptors. The interaction of this protein with TRADD, a TNF receptor associated apoptotic signal transducer, ensures the recruitment of IAPs for the direct inhibition of caspase activation. BIRC2/c-IAP1, an apoptosis inhibitor possessing ubiquitin ligase activity, can unbiquitinate and induce the degradation of this protein, and thus potentiate TNF-induced apoptosis. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of only one transcript has been determined. [provided by RefSeq, Jul 2008]

TRAF3 Gene

TNF receptor-associated factor 3

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from, members of the TNF receptor (TNFR) superfamily. This protein participates in the signal transduction of CD40, a TNFR family member important for the activation of the immune response. This protein is found to be a critical component of the lymphotoxin-beta receptor (LTbetaR) signaling complex, which induces NF-kappaB activation and cell death initiated by LTbeta ligation. Epstein-Barr virus encoded latent infection membrane protein-1 (LMP1) can interact with this and several other members of the TRAF family, which may be essential for the oncogenic effects of LMP1. Several alternatively spliced transcript variants encoding three distinct isoforms have been reported. [provided by RefSeq, Dec 2010]

TRAF4 Gene

TNF receptor-associated factor 4

This gene encodes a member of the TNF receptor associated factor (TRAF) family. TRAF proteins are associated with, and mediate signal transduction from members of the TNF receptor superfamily. The encoded protein has been shown to interact with neurotrophin receptor, p75 (NTR/NTSR1), and negatively regulate NTR induced cell death and NF-kappa B activation. This protein has been found to bind to p47phox, a cytosolic regulatory factor included in a multi-protein complex known as NAD(P)H oxidase. This protein thus, is thought to be involved in the oxidative activation of MAPK8/JNK. Alternatively spliced transcript variants have been observed but the full-length nature of only one has been determined. [provided by RefSeq, Jul 2008]

TRAF5 Gene

TNF receptor-associated factor 5

The scaffold protein encoded by this gene is a member of the tumor necrosis factor receptor-associated factor (TRAF) protein family and contains a meprin and TRAF homology (MATH) domain, a RING-type zinc finger, and two TRAF-type zinc fingers. TRAF proteins are associated with, and mediate signal transduction from members of the TNF receptor superfamily. This protein is one of the components of a multiple protein complex which binds to tumor necrosis factor (TNF) receptor cytoplasmic domains and mediates TNF-induced activation. Alternate transcriptional splice variants have been characterized. [provided by RefSeq, Jul 2008]

TRAF6 Gene

TNF receptor-associated factor 6, E3 ubiquitin protein ligase

The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins are associated with, and mediate signal transduction from, members of the TNF receptor superfamily. This protein mediates signaling from members of the TNF receptor superfamily as well as the Toll/IL-1 family. Signals from receptors such as CD40, TNFSF11/RANCE and IL-1 have been shown to be mediated by this protein. This protein also interacts with various protein kinases including IRAK1/IRAK, SRC and PKCzeta, which provides a link between distinct signaling pathways. This protein functions as a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. The interaction of this protein with UBE2N/UBC13, and UBE2V1/UEV1A, which are ubiquitin conjugating enzymes catalyzing the formation of polyubiquitin chains, has been found to be required for IKK activation by this protein. This protein also interacts with the transforming growth factor (TGF) beta receptor complex and is required for Smad-independent activation of the JNK and p38 kinases. This protein has an amino terminal RING domain which is followed by four zinc-finger motifs, a central coiled-coil region and a highly conserved carboxyl terminal domain, known as the TRAF-C domain. Two alternatively spliced transcript variants, encoding an identical protein, have been reported. [provided by RefSeq, Feb 2012]

TRAF7 Gene

TNF receptor-associated factor 7, E3 ubiquitin protein ligase

Tumor necrosis factor (TNF; see MIM 191160) receptor-associated factors, such as TRAF7, are signal transducers for members of the TNF receptor superfamily (see MIM 191190). TRAFs are composed of an N-terminal cysteine/histidine-rich region containing zinc RING and/or zinc finger motifs; a coiled-coil (leucine zipper) motif; and a homologous region that defines the TRAF family, the TRAF domain, which is involved in self-association and receptor binding.[supplied by OMIM, Apr 2004]

NPR2 Gene

natriuretic peptide receptor 2

This gene encodes natriuretic peptide receptor B, one of two integral membrane receptors for natriuretic peptides. Both NPR1 and NPR2 contain five functional domains: an extracellular ligand-binding domain, a single membrane-spanning region, and intracellularly a protein kinase homology domain, a helical hinge region involved in oligomerization, and a carboxyl-terminal guanylyl cyclase catalytic domain. The protein is the primary receptor for C-type natriuretic peptide (CNP), which upon ligand binding exhibits greatly increased guanylyl cyclase activity. Mutations in this gene are the cause of acromesomelic dysplasia Maroteaux type. [provided by RefSeq, Jul 2008]

NPR3 Gene

natriuretic peptide receptor 3

This gene encodes one of three natriuretic peptide receptors. Natriutetic peptides are small peptides which regulate blood volume and pressure, pulmonary hypertension, and cardiac function as well as some metabolic and growth processes. The product of this gene encodes a natriuretic peptide receptor responsible for clearing circulating and extracellular natriuretic peptides through endocytosis of the receptor. Multiple transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Feb 2011]

OR5A2 Gene

olfactory receptor, family 5, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5A1 Gene

olfactory receptor, family 5, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRM8 Gene

glutamate receptor, metabotropic 8

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

GRM4 Gene

glutamate receptor, metabotropic 4

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

GRM5 Gene

glutamate receptor, metabotropic 5

This gene encodes a member of the G-protein coupled receptor 3 protein family. The encoded protein is a metabatropic glutamate receptor, whose signaling activates a phosphatidylinositol-calcium second messenger system. This protein may be involved in the regulation of neural network activity and synaptic plasticity. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. A pseudogene of this gene has been defined on chromosome 11. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

GRM6 Gene

glutamate receptor, metabotropic 6

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. [provided by RefSeq, Feb 2012]

GRM7 Gene

glutamate receptor, metabotropic 7

L-glutamate is the major excitatory neurotransmitter in the central nervous system, and it activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors that have been divided into three groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5, and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3, while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2009]

GRM1 Gene

glutamate receptor, metabotropic 1

This gene encodes a metabotropic glutamate receptor that functions by activating phospholipase C. L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The canonical alpha isoform of the encoded protein is a disulfide-linked homodimer whose activity is mediated by a G-protein-coupled phosphatidylinositol-calcium second messenger system. This gene may be associated with many disease states, including schizophrenia, bipolar disorder, depression, and breast cancer. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, May 2013]

GRM2 Gene

glutamate receptor, metabotropic 2

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GRM3 Gene

glutamate receptor, metabotropic 3

L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities. [provided by RefSeq, Jul 2008]

OR4E2 Gene

olfactory receptor, family 4, subfamily E, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4E1 Gene

olfactory receptor, family 4, subfamily E, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C4P Gene

olfactory receptor, family 4, subfamily C, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR2F6 Gene

nuclear receptor subfamily 2, group F, member 6

NR2F1 Gene

nuclear receptor subfamily 2, group F, member 1

The protein encoded by this gene is a nuclear hormone receptor and transcriptional regulator. The encoded protein acts as a homodimer and binds to 5'-AGGTCA-3' repeats. Defects in this gene are a cause of Bosch-Boonstra optic atrophy syndrome (BBOAS). [provided by RefSeq, Apr 2014]

NR2F2 Gene

nuclear receptor subfamily 2, group F, member 2

This gene encodes a member of the steroid thyroid hormone superfamily of nuclear receptors. The encoded protein is a ligand inducible transcription factor that is involved in the regulation of many different genes. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Mar 2010]

OR4C46 Gene

olfactory receptor, family 4, subfamily C, member 46

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C45 Gene

olfactory receptor, family 4, subfamily C, member 45

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1R1P Gene

olfactory receptor, family 1, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B7P Gene

olfactory receptor, family 8, subfamily B, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R62P Gene

taste receptor, type 2, member 62, pseudogene

OR4K7P Gene

olfactory receptor, family 4, subfamily K, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR79 Gene

G protein-coupled receptor 79, pseudogene

GPR78 Gene

G protein-coupled receptor 78

The protein encoded by this gene belongs to the G protein-coupled receptor family, which contain 7 transmembrane domains and transduce extracellular signals through heterotrimeric G proteins. This is an orphan receptor, which displays significant level of constitutive activity. Association analysis shows preliminary evidence for the involvement of this gene in susceptibility to bipolar affective disorder and schizophrenia. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Nov 2011]

LOC100130649 Gene

G protein-coupled receptor 160 pseudogene

TSHR Gene

thyroid stimulating hormone receptor

The protein encoded by this gene is a membrane protein and a major controller of thyroid cell metabolism. The encoded protein is a receptor for thyrothropin and thyrostimulin, and its activity is mediated by adenylate cyclase. Defects in this gene are a cause of several types of hyperthyroidism. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2008]

OR14I1 Gene

olfactory receptor, family 14, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4X1 Gene

olfactory receptor, family 4, subfamily X, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4X2 Gene

olfactory receptor, family 4, subfamily X, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J9P Gene

olfactory receptor, family 10, subfamily J, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LTBR Gene

lymphotoxin beta receptor (TNFR superfamily, member 3)

This gene encodes a member of the tumor necrosis factor receptor superfamily. The major ligands of this receptor include lymphotoxin alpha/beta and tumor necrosis factor ligand superfamily member 14. The encoded protein plays a role in signalling during the development of lymphoid and other organs, lipid metabolism, immune response, and programmed cell death. Activity of this receptor has also been linked to carcinogenesis. Alternatively spliced transcript variants encoding multiple isoforms have been observed. [provided by RefSeq, Aug 2012]

SRPRB Gene

signal recognition particle receptor, B subunit

The protein encoded by this gene has similarity to mouse protein which is a subunit of the signal recognition particle receptor (SR). This subunit is a transmembrane GTPase belonging to the GTPase superfamily. It anchors alpha subunit, a peripheral membrane GTPase, to the ER membrane. SR is required for the cotranslational targeting of both secretory and membrane proteins to the ER membrane. [provided by RefSeq, Jul 2008]

OR7E116P Gene

olfactory receptor, family 7, subfamily E, member 116 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R53P Gene

vomeronasal 1 receptor 53 pseudogene

IL23R Gene

interleukin 23 receptor

The protein encoded by this gene is a subunit of the receptor for IL23A/IL23. This protein pairs with the receptor molecule IL12RB1/IL12Rbeta1, and both are required for IL23A signaling. This protein associates constitutively with Janus kinase 2 (JAK2), and also binds to transcription activator STAT3 in a ligand-dependent manner. [provided by RefSeq, Jul 2008]

OR6C64P Gene

olfactory receptor, family 6, subfamily C, member 64 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRK6P1 Gene

G protein-coupled receptor kinase 6 pseudogene 1

OR5AS1 Gene

olfactory receptor, family 5, subfamily AS, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AZ1P Gene

olfactory receptor, family 5, subfamily AZ, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R98P Gene

vomeronasal 1 receptor 98 pseudogene

OR11J1P Gene

olfactory receptor, family 11, subfamily J, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100124401 Gene

cytokine receptor-like factor 3 pseudogene

LOC100418660 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418667 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

LOC100131261 Gene

proline-rich nuclear receptor coactivator 2 pseudogene

OR7E4P Gene

olfactory receptor, family 7, subfamily E, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RAMP1 Gene

receptor (G protein-coupled) activity modifying protein 1

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP1) protein, CRLR functions as a CGRP receptor. The RAMP1 protein is involved in the terminal glycosylation, maturation, and presentation of the CGRP receptor to the cell surface. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2015]

RAMP3 Gene

receptor (G protein-coupled) activity modifying protein 3

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP3) protein, CRLR functions as an adrenomedullin receptor. [provided by RefSeq, Jul 2008]

RAMP2 Gene

receptor (G protein-coupled) activity modifying protein 2

The protein encoded by this gene is a member of the RAMP family of single-transmembrane-domain proteins, called receptor (calcitonin) activity modifying proteins (RAMPs). RAMPs are type I transmembrane proteins with an extracellular N terminus and a cytoplasmic C terminus. RAMPs are required to transport calcitonin-receptor-like receptor (CRLR) to the plasma membrane. CRLR, a receptor with seven transmembrane domains, can function as either a calcitonin-gene-related peptide (CGRP) receptor or an adrenomedullin receptor, depending on which members of the RAMP family are expressed. In the presence of this (RAMP2) protein, CRLR functions as an adrenomedullin receptor. The RAMP2 protein is involved in core glycosylation and transportation of adrenomedullin receptor to the cell surface. [provided by RefSeq, Jul 2008]

OR5H3P Gene

olfactory receptor, family 5, subfamily H, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6L1P Gene

olfactory receptor, family 6, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421864 Gene

olfactory receptor, family 7, subfamily D, member 2 pseudogene

TRBV28 Gene

T cell receptor beta variable 28

TRBV26 Gene

T cell receptor beta variable 26 (pseudogene)

IRS3P Gene

insulin receptor substrate 3, pseudogene

OR8K5 Gene

olfactory receptor, family 8, subfamily K, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR4A2 Gene

nuclear receptor subfamily 4, group A, member 2

This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcription factor. Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson disease, schizophernia, and manic depression. Misregulation of this gene may be associated with rheumatoid arthritis. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. [provided by RefSeq, Jul 2008]

NR4A3 Gene

nuclear receptor subfamily 4, group A, member 3

This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes. The translocation breakpoints are associated with Nuclear Receptor Subfamily 4, Group A, Member 3 (on chromosome 9) and either Ewing Sarcome Breakpoint Region 1 (on chromosome 22), RNA Polymerase II, TATA Box-Binding Protein-Associated Factor, 68-KD (on chromosome 17), or Transcription factor 12 (on chromosome 15). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

NR4A1 Gene

nuclear receptor subfamily 4, group A, member 1

This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. Expression is induced by phytohemagglutinin in human lymphocytes and by serum stimulation of arrested fibroblasts. The encoded protein acts as a nuclear transcription factor. Translocation of the protein from the nucleus to mitochondria induces apoptosis. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2011]

OR6J1 Gene

olfactory receptor, family 6, subfamily J, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR153 Gene

G protein-coupled receptor 153

OR7E23P Gene

olfactory receptor, family 7, subfamily E, member 23 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

EPHB2 Gene

EPH receptor B2

This gene encodes a member of the Eph receptor family of receptor tyrosine kinase transmembrane glycoproteins. These receptors are composed of an N-terminal glycosylated ligand-binding domain, a transmembrane region and an intracellular kinase domain. They bind ligands called ephrins and are involved in diverse cellular processes including motility, division, and differentiation. A distinguishing characteristic of Eph-ephrin signaling is that both receptors and ligands are competent to transduce a signaling cascade, resulting in bidirectional signaling. This protein belongs to a subgroup of the Eph receptors called EphB. Proteins of this subgroup are distinguished from other members of the family by sequence homology and preferential binding affinity for membrane-bound ephrin-B ligands. Allelic variants are associated with prostate and brain cancer susceptibility. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2015]

EPHB3 Gene

EPH receptor B3

Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into two groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. This gene encodes a receptor for ephrin-B family members. [provided by RefSeq, Mar 2010]

EPHB1 Gene

EPH receptor B1

Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. The protein encoded by this gene is a receptor for ephrin-B family members. [provided by RefSeq, Jul 2008]

EPHB6 Gene

EPH receptor B6

This gene encodes a member of a family of transmembrane proteins that function as receptors for ephrin-B family proteins. Unlike other members of this family, the encoded protein does not contain a functional kinase domain. Activity of this protein can influence cell adhesion and migration. Expression of this gene is downregulated during tumor progression, suggesting that the protein may suppress tumor invasion and metastasis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

EPHB4 Gene

EPH receptor B4

Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. The protein encoded by this gene binds to ephrin-B2 and plays an essential role in vascular development. [provided by RefSeq, Jul 2008]

RYR2 Gene

ryanodine receptor 2 (cardiac)

This gene encodes a ryanodine receptor found in cardiac muscle sarcoplasmic reticulum. The encoded protein is one of the components of a calcium channel, composed of a tetramer of the ryanodine receptor proteins and a tetramer of FK506 binding protein 1B proteins, that supplies calcium to cardiac muscle. Mutations in this gene are associated with stress-induced polymorphic ventricular tachycardia and arrhythmogenic right ventricular dysplasia. [provided by RefSeq, Jul 2008]

ITPRIPL2 Gene

inositol 1,4,5-trisphosphate receptor interacting protein-like 2

ITPRIPL1 Gene

inositol 1,4,5-trisphosphate receptor interacting protein-like 1

OR13Z1P Gene

olfactory receptor, family 13, subfamily Z, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MC2R Gene

melanocortin 2 receptor (adrenocorticotropic hormone)

MC2R encodes one member of the five-member G-protein associated melanocortin receptor family. Melanocortins (melanocyte-stimulating hormones and adrenocorticotropic hormone) are peptides derived from pro-opiomelanocortin (POMC). MC2R is selectively activated by adrenocorticotropic hormone, whereas the other four melanocortin receptors recognize a variety of melanocortin ligands. Mutations in MC2R can result in familial glucocorticoid deficiency. Alternate transcript variants have been found for this gene. [provided by RefSeq, May 2014]

OR1AB1P Gene

olfactory receptor, family 1, subfamily AB, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR56A5 Gene

olfactory receptor, family 56, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Mar 2009]

OSMR Gene

oncostatin M receptor

This gene encodes a member of the type I cytokine receptor family. The encoded protein heterodimerizes with interleukin 6 signal transducer to form the type II oncostatin M receptor and with interleukin 31 receptor A to form the interleukin 31 receptor, and thus transduces oncostatin M and interleukin 31 induced signaling events. Mutations in this gene have been associated with familial primary localized cutaneous amyloidosis. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2009]

IL18R1 Gene

interleukin 18 receptor 1

The protein encoded by this gene is a cytokine receptor that belongs to the interleukin 1 receptor family. This receptor specifically binds interleukin 18 (IL18), and is essential for IL18 mediated signal transduction. IFN-alpha and IL12 are reported to induce the expression of this receptor in NK and T cells. This gene along with four other members of the interleukin 1 receptor family, including IL1R2, IL1R1, ILRL2 (IL-1Rrp2), and IL1RL1 (T1/ST2), form a gene cluster on chromosome 2q. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2013]

BCAP31P1 Gene

B-cell receptor-associated protein 31 pseudogene 1

GABARAP Gene

GABA(A) receptor-associated protein

Gamma-aminobutyric acid A receptors [GABA(A) receptors] are ligand-gated chloride channels that mediate inhibitory neurotransmission. This gene encodes GABA(A) receptor-associated protein, which is highly positively charged in its N-terminus and shares sequence similarity with light chain-3 of microtubule-associated proteins 1A and 1B. This protein clusters neurotransmitter receptors by mediating interaction with the cytoskeleton. [provided by RefSeq, Jul 2008]

CHRNA10 Gene

cholinergic receptor, nicotinic, alpha 10 (neuronal)

OR4A48P Gene

olfactory receptor, family 4, subfamily A, member 48 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100131200 Gene

mannose-6-phosphate receptor (cation dependent) pseudogene

RXRG Gene

retinoid X receptor, gamma

This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the antiproliferative effects of retinoic acid (RA). This receptor forms dimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. This gene is expressed at significantly lower levels in non-small cell lung cancer cells. Alternatively spliced transcript variants have been described. [provided by RefSeq, Jun 2010]

RXRA Gene

retinoid X receptor, alpha

Retinoid X receptors (RXRs) and retinoic acid receptors (RARs) are nuclear receptors that mediate the biological effects of retinoids by their involvement in retinoic acid-mediated gene activation. These receptors function as transcription factors by binding as homodimers or heterodimers to specific sequences in the promoters of target genes. The protein encoded by this gene is a member of the steroid and thyroid hormone receptor superfamily of transcriptional regulators. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2014]

RXRB Gene

retinoid X receptor, beta

This gene encodes a member of the retinoid X receptor (RXR) family of nuclear receptors which are involved in mediating the effects of retinoic acid (RA). The encoded protein forms homodimers with the retinoic acid, thyroid hormone, and vitamin D receptors, increasing both DNA binding and transcriptional function on their respective response elements. This gene lies within the major histocompatibility complex (MHC) class II region on chromosome 6. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jul 2012]

OR51A6P Gene

olfactory receptor, family 51, subfamily A, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RTP4 Gene

receptor (chemosensory) transporter protein 4

RTP5 Gene

receptor (chemosensory) transporter protein 5 (putative)

RTP2 Gene

receptor (chemosensory) transporter protein 2

RTP3 Gene

receptor (chemosensory) transporter protein 3

RTP1 Gene

receptor (chemosensory) transporter protein 1

NMUR2 Gene

neuromedin U receptor 2

This gene encodes a protein from the G-protein coupled receptor 1 family. This protein is a receptor for neuromedin U, which is a neuropeptide that is widely distributed in the gut and central nervous system. This receptor plays an important role in the regulation of food intake and body weight. [provided by RefSeq, Jul 2008]

NMUR1 Gene

neuromedin U receptor 1

OR7E104P Gene

olfactory receptor, family 7, subfamily E, member 104 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC285706 Gene

cytokine receptor-like factor 3 pseudogene

VLDLR Gene

very low density lipoprotein receptor

The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. This gene encodes a lipoprotein receptor that is a member of the LDLR family and plays important roles in VLDL-triglyceride metabolism and the reelin signaling pathway. Mutations in this gene cause VLDLR-associated cerebellar hypoplasia. Alternative splicing generates multiple transcript variants encoding distinct isoforms for this gene. [provided by RefSeq, Aug 2009]

NCR2 Gene

natural cytotoxicity triggering receptor 2

VN2R19P Gene

vomeronasal 2 receptor 19 pseudogene

LOC105378220 Gene

macrophage receptor MARCO-like

MAS1 Gene

MAS1 proto-oncogene, G protein-coupled receptor

This gene encodes a class I seven-transmembrane G-protein-coupled receptor. The encoded protein is a receptor for angiotensin-(1-7) and preferentially couples to the Gq protein, activating the phospholipase C signaling pathway. The encoded protein may play a role in multiple processes including hypotension, smooth muscle relaxation and cardioprotection by mediating the effects of angiotensin-(1-7). [provided by RefSeq, May 2012]

OR4G3P Gene

olfactory receptor, family 4, subfamily G, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR1DP1 Gene

5-hydroxytryptamine (serotonin) receptor 1D pseudogene 1

OR5D15P Gene

olfactory receptor, family 5, subfamily D, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PPRC1 Gene

peroxisome proliferator-activated receptor gamma, coactivator-related 1

The protein encoded by this gene is similar to PPAR-gamma coactivator 1 (PPARGC1/PGC-1), a protein that can activate mitochondrial biogenesis in part through a direct interaction with nuclear respiratory factor 1 (NRF1). This protein has been shown to interact with NRF1. It is thought to be a functional relative of PPAR-gamma coactivator 1 that activates mitochondrial biogenesis through NRF1 in response to proliferative signals. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2013]

OR5M10 Gene

olfactory receptor, family 5, subfamily M, member 10

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M11 Gene

olfactory receptor, family 5, subfamily M, member 11

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100420580 Gene

taste receptor, type 2, member 7 pseudogene

LOC100420583 Gene

taste receptor, type 2, member 7 pseudogene

CHRNB1 Gene

cholinergic receptor, nicotinic, beta 1 (muscle)

The muscle acetylcholine receptor is composed of five subunits: two alpha subunits and one beta, one gamma, and one delta subunit. This gene encodes the beta subunit of the acetylcholine receptor. The acetylcholine receptor changes conformation upon acetylcholine binding leading to the opening of an ion-conducting channel across the plasma membrane. Mutations in this gene are associated with slow-channel congenital myasthenic syndrome. [provided by RefSeq, Jul 2008]

CHRNB3 Gene

cholinergic receptor, nicotinic, beta 3 (neuronal)

The nicotinic acetylcholine receptors (nAChRs) are members of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. The nAChRs are (hetero)pentamers composed of homologous subunits. The subunits that make up the muscle and neuronal forms of nAChRs are encoded by separate genes and have different primary structure. There are several subtypes of neuronal nAChRs that vary based on which homologous subunits are arranged around the central channel. They are classified as alpha-subunits if, like muscle alpha-1 (MIM 100690), they have a pair of adjacent cysteines as part of the presumed acetylcholine binding site. Subunits lacking these cysteine residues are classified as beta-subunits (Groot Kormelink and Luyten, 1997 [PubMed 9009220]). Elliott et al. (1996) [PubMed 8906617] stated that the proposed structure for each subunit is a conserved N-terminal extracellular domain followed by 3 conserved transmembrane domains, a variable cytoplasmic loop, a fourth conserved transmembrane domain, and a short C-terminal extracellular region.[supplied by OMIM, Apr 2010]

CHRNB2 Gene

cholinergic receptor, nicotinic, beta 2 (neuronal)

Neuronal acetylcholine receptors are homo- or heteropentameric complexes composed of homologous alpha and beta subunits. They belong to a superfamily of ligand-gated ion channels which allow the flow of sodium and potassium across the plasma membrane in response to ligands such as acetylcholine and nicotine. This gene encodes one of several beta subunits. Mutations in this gene are associated with autosomal dominant nocturnal frontal lobe epilepsy. [provided by RefSeq, Jul 2008]

CHRNB4 Gene

cholinergic receptor, nicotinic, beta 4 (neuronal)

ANTXRLP1 Gene

anthrax toxin receptor-like pseudogene 1

TAS2R12P Gene

taste receptor, type 2, member 12, pseudogene

OR4P4 Gene

olfactory receptor, family 4, subfamily P, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4D8P Gene

olfactory receptor, family 4, subfamily D, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GRPR Gene

gastrin-releasing peptide receptor

Gastrin-releasing peptide (GRP) regulates numerous functions of the gastrointestinal and central nervous systems, including release of gastrointestinal hormones, smooth muscle cell contraction, and epithelial cell proliferation and is a potent mitogen for neoplastic tissues. The effects of GRP are mediated through the gastrin-releasing peptide receptor. This receptor is a glycosylated, 7-transmembrane G-protein coupled receptor that activates the phospholipase C signaling pathway. The receptor is aberrantly expressed in numerous cancers such as those of the lung, colon, and prostate. An individual with autism and multiple exostoses was found to have a balanced translocation between chromosome 8 and a chromosome X breakpoint located within the gastrin-releasing peptide receptor gene. [provided by RefSeq, Jul 2008]

AIPL1 Gene

aryl hydrocarbon receptor interacting protein-like 1

Leber congenital amaurosis (LCA) is the most severe inherited retinopathy with the earliest age of onset and accounts for at least 5% of all inherited retinal diseases. Affected individuals are diagnosed at birth or in the first few months of life with nystagmus, severely impaired vision or blindness and an abnormal or flat electroretinogram. The photoreceptor/pineal-expressed gene, AIPL1, encoding aryl-hydrocarbon interacting protein-like 1, is located within the LCA4 candidate region. The encoded protein contains three tetratricopeptide motifs, consistent with chaperone or nuclear transport activity. Mutations in this gene may cause approximately 20% of recessive LCA. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]

OR2B11 Gene

olfactory receptor, family 2, subfamily B, member 11

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AN1 Gene

olfactory receptor, family 5, subfamily AN, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R90P Gene

vomeronasal 1 receptor 90 pseudogene

OR2H4P Gene

olfactory receptor, family 2, subfamily H, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NPY6R Gene

neuropeptide Y receptor Y6 (pseudogene)

KISS1R Gene

KISS1 receptor

The protein encoded by this gene is a galanin-like G protein-coupled receptor that binds metastin, a peptide encoded by the metastasis suppressor gene KISS1. The tissue distribution of the expressed gene suggests that it is involved in the regulation of endocrine function, and this is supported by the finding that this gene appears to play a role in the onset of puberty. Mutations in this gene have been associated with hypogonadotropic hypogonadism and central precocious puberty. [provided by RefSeq, Jul 2008]

OR4D9 Gene

olfactory receptor, family 4, subfamily D, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ASGR1 Gene

asialoglycoprotein receptor 1

This gene encodes a subunit of the asialoglycoprotein receptor. This receptor is a transmembrane protein that plays a critical role in serum glycoprotein homeostasis by mediating the endocytosis and lysosomal degradation of glycoproteins with exposed terminal galactose or N-acetylgalactosamine residues. The asialoglycoprotein receptor may facilitate hepatic infection by multiple viruses including hepatitis B, and is also a target for liver-specific drug delivery. The asialoglycoprotein receptor is a hetero-oligomeric protein composed of major and minor subunits, which are encoded by different genes. The protein encoded by this gene is the more abundant major subunit. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jan 2011]

ASGR2 Gene

asialoglycoprotein receptor 2

This gene encodes a subunit of the asialoglycoprotein receptor. This receptor is a transmembrane protein that plays a critical role in serum glycoprotein homeostasis by mediating the endocytosis and lysosomal degradation of glycoproteins with exposed terminal galactose or N-acetylgalactosamine residues. The asialoglycoprotein receptor may facilitate hepatic infection by multiple viruses including hepatitis B, and is also a target for liver-specific drug delivery. The asialoglycoprotein receptor is a hetero-oligomeric protein composed of major and minor subunits, which are encoded by different genes. The protein encoded by this gene is the less abundant minor subunit. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Jan 2011]

OR9A3P Gene

olfactory receptor, family 9, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105375057 Gene

triggering receptor expressed on myeloid cells 1-like

TRAV31 Gene

T cell receptor alpha variable 31 (pseudogene)

TRAJ30 Gene

T cell receptor alpha joining 30

TRAJ31 Gene

T cell receptor alpha joining 31

TRAJ33 Gene

T cell receptor alpha joining 33

TRAJ34 Gene

T cell receptor alpha joining 34

TRAJ35 Gene

T cell receptor alpha joining 35 (non-functional)

TRAJ36 Gene

T cell receptor alpha joining 36

TRAJ37 Gene

T cell receptor alpha joining 37

TRAJ38 Gene

T cell receptor alpha joining 38

TRAJ39 Gene

T cell receptor alpha joining 39

NRBF2P1 Gene

nuclear receptor binding factor 2 pseudogene 1

NRBF2P3 Gene

nuclear receptor binding factor 2 pseudogene 3

NRBF2P2 Gene

nuclear receptor binding factor 2 pseudogene 2

LOC100421886 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

KIR3DS1 Gene

killer cell immunoglobulin-like receptor, three domains, short cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2013]

OR10D3 Gene

olfactory receptor, family 10, subfamily D, member 3 (non-functional)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GALR3 Gene

galanin receptor 3

The neuropeptide galanin modulates a variety of physiologic processes including cognition/memory, sensory/pain processing, hormone secretion, and feeding behavior. The human galanin receptors are G protein-coupled receptors that functionally couple to their intracellular effector through distinct signaling pathways. GALR3 is found in many tissues and may be expressed as 1.4-, 2.4-, and 5-kb transcripts [provided by RefSeq, Jul 2008]

GALR2 Gene

galanin receptor 2

Galanin is an important neuromodulator present in the brain, gastrointestinal system, and hypothalamopituitary axis. It is a 30-amino acid non-C-terminally amidated peptide that potently stimulates growth hormone secretion, inhibits cardiac vagal slowing of heart rate, abolishes sinus arrhythmia, and inhibits postprandial gastrointestinal motility. The actions of galanin are mediated through interaction with specific membrane receptors that are members of the 7-transmembrane family of G protein-coupled receptors. GALR2 interacts with the N-terminal residues of the galanin peptide. The primary signaling mechanism for GALR2 is through the phospholipase C/protein kinase C pathway (via Gq), in contrast to GALR1, which communicates its intracellular signal by inhibition of adenylyl cyclase through Gi. However, it has been demonstrated that GALR2 couples efficiently to both the Gq and Gi proteins to simultaneously activate 2 independent signal transduction pathways. [provided by RefSeq, Jul 2008]

GALR1 Gene

galanin receptor 1

The neuropeptide galanin elicits a range of biological effects by interaction with specific G-protein-coupled receptors. Galanin receptors are seven-transmembrane proteins shown to activate a variety of intracellular second-messenger pathways. GALR1 inhibits adenylyl cyclase via a G protein of the Gi/Go family. GALR1 is widely expressed in the brain and spinal cord, as well as in peripheral sites such as the small intestine and heart. [provided by RefSeq, Jul 2008]

OR4C10P Gene

olfactory receptor, family 4, subfamily C, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MRC1 Gene

mannose receptor, C type 1

The recognition of complex carbohydrate structures on glycoproteins is an important part of several biological processes, including cell-cell recognition, serum glycoprotein turnover, and neutralization of pathogens. The protein encoded by this gene is a type I membrane receptor that mediates the endocytosis of glycoproteins by macrophages. The protein has been shown to bind high-mannose structures on the surface of potentially pathogenic viruses, bacteria, and fungi so that they can be neutralized by phagocytic engulfment.[provided by RefSeq, Apr 2011]

OR4B2P Gene

olfactory receptor, family 4, subfamily B, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4G4P Gene

olfactory receptor, family 4, subfamily G, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MPL Gene

MPL proto-oncogene, thrombopoietin receptor

In 1990 an oncogene, v-mpl, was identified from the murine myeloproliferative leukemia virus that was capable of immortalizing bone marrow hematopoietic cells from different lineages. In 1992 the human homologue, named, c-mpl, was cloned. Sequence data revealed that c-mpl encoded a protein that was homologous with members of the hematopoietic receptor superfamily. Presence of anti-sense oligodeoxynucleotides of c-mpl inhibited megakaryocyte colony formation. The ligand for c-mpl, thrombopoietin, was cloned in 1994. Thrombopoietin was shown to be the major regulator of megakaryocytopoiesis and platelet formation. The protein encoded by the c-mpl gene, CD110, is a 635 amino acid transmembrane domain, with two extracellular cytokine receptor domains and two intracellular cytokine receptor box motifs . TPO-R deficient mice were severely thrombocytopenic, emphasizing the important role of CD110 and thrombopoietin in megakaryocyte and platelet formation. Upon binding of thrombopoietin CD110 is dimerized and the JAK family of non-receptor tyrosine kinases, as well as the STAT family, the MAPK family, the adaptor protein Shc and the receptors themselves become tyrosine phosphorylated. [provided by RefSeq, Jul 2008]

VN1R112P Gene

vomeronasal 1 receptor 112 pseudogene

GRIN2B Gene

glutamate receptor, ionotropic, N-methyl D-aspartate 2B

N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008]

GRIN2C Gene

glutamate receptor, ionotropic, N-methyl D-aspartate 2C

This gene encodes a subunit of the N-methyl-D-aspartate (NMDA) receptor, which is a subtype of ionotropic glutamate receptor. NMDA receptors are found in the central nervous system, are permeable to cations and have an important role in physiological processes such as learning, memory, and synaptic development. The receptor is a tetramer of different subunits (typically heterodimer of subunit 1 with one or more of subunits 2A-D), forming a channel that is permeable to calcium, potassium, and sodium, and whose properties are determined by subunit composition. Alterations in the subunit composition of the receptor are associated with pathophysiological conditions such as Parkinson's disease, Alzheimer's disease, depression, and schizophrenia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013]

GRIN2A Gene

glutamate receptor, ionotropic, N-methyl D-aspartate 2A

This gene encodes a member of the glutamate-gated ion channel protein family. The encoded protein is an N-methyl-D-aspartate (NMDA) receptor subunit. NMDA receptors are both ligand-gated and voltage-dependent, and are involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. These receptors are permeable to calcium ions, and activation results in a calcium influx into post-synaptic cells, which results in the activation of several signaling cascades. Disruption of this gene is associated with focal epilepsy and speech disorder with or without mental retardation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

GRIN2D Gene

glutamate receptor, ionotropic, N-methyl D-aspartate 2D

N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C), and NMDAR2D (GRIN2D). [provided by RefSeq, Mar 2010]

TAS2R19 Gene

taste receptor, type 2, member 19

TAS2R14 Gene

taste receptor, type 2, member 14

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R16 Gene

taste receptor, type 2, member 16

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily. These family members are specifically expressed by taste receptor cells of the tongue and palate epithelia. Each of these apparently intronless genes encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R10 Gene

taste receptor, type 2, member 10

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R13 Gene

taste receptor, type 2, member 13

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

LOC402279 Gene

glutamate receptor, metabotropic 8 pseudogene

NCOR1P1 Gene

nuclear receptor corepressor 1 pseudogene 1

NCOR1P3 Gene

nuclear receptor corepressor 1 pseudogene 3

OR8S1 Gene

olfactory receptor, family 8, subfamily S, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL2RA Gene

interleukin 2 receptor, alpha

The interleukin 2 (IL2) receptor alpha (IL2RA) and beta (IL2RB) chains, together with the common gamma chain (IL2RG), constitute the high-affinity IL2 receptor. Homodimeric alpha chains (IL2RA) result in low-affinity receptor, while homodimeric beta (IL2RB) chains produce a medium-affinity receptor. Normally an integral-membrane protein, soluble IL2RA has been isolated and determined to result from extracellular proteolyisis. Alternately-spliced IL2RA mRNAs have been isolated, but the significance of each is presently unknown. Mutations in this gene are associated with interleukin 2 receptor alpha deficiency.[provided by RefSeq, Nov 2009]

IL2RB Gene

interleukin 2 receptor, beta

The interleukin 2 receptor, which is involved in T cell-mediated immune responses, is present in 3 forms with respect to ability to bind interleukin 2. The low affinity form is a monomer of the alpha subunit and is not involved in signal transduction. The intermediate affinity form consists of an alpha/beta subunit heterodimer, while the high affinity form consists of an alpha/beta/gamma subunit heterotrimer. Both the intermediate and high affinity forms of the receptor are involved in receptor-mediated endocytosis and transduction of mitogenic signals from interleukin 2. The protein encoded by this gene represents the beta subunit and is a type I membrane protein. [provided by RefSeq, Jul 2008]

IL2RG Gene

interleukin 2 receptor, gamma

The protein encoded by this gene is an important signaling component of many interleukin receptors, including those of interleukin -2, -4, -7 and -21, and is thus referred to as the common gamma chain. Mutations in this gene cause X-linked severe combined immunodeficiency (XSCID), as well as X-linked combined immunodeficiency (XCID), a less severe immunodeficiency disorder. [provided by RefSeq, Mar 2010]

TRBV20OR9-2 Gene

T cell receptor beta variable 20/OR9-2 (non-functional)

OR4A40P Gene

olfactory receptor, family 4, subfamily A, member 40 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL6R Gene

interleukin 6 receptor

This gene encodes a subunit of the interleukin 6 (IL6) receptor complex. Interleukin 6 is a potent pleiotropic cytokine that regulates cell growth and differentiation and plays an important role in the immune response. The IL6 receptor is a protein complex consisting of this protein and interleukin 6 signal transducer (IL6ST/GP130/IL6-beta), a receptor subunit also shared by many other cytokines. Dysregulated production of IL6 and this receptor are implicated in the pathogenesis of many diseases, such as multiple myeloma, autoimmune diseases and prostate cancer. Alternatively spliced transcript variants encoding distinct isoforms have been reported. A pseudogene of this gene is found on chromosome 9.[provided by RefSeq, May 2011]

OR2N1P Gene

olfactory receptor, family 2, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421902 Gene

olfactory receptor, family 9, subfamily A, member 2 pseudogene

LOC100421907 Gene

olfactory receptor, family 2, subfamily A, member 5 pseudogene

LOC100421904 Gene

olfactory receptor, family 2, subfamily F, member 1 pseudogene

LOC100421909 Gene

olfactory receptor, family 8, subfamily B, member 4 pseudogene

TRAV2 Gene

T cell receptor alpha variable 2

TRAV3 Gene

T cell receptor alpha variable 3 (gene/pseudogene)

TRAV4 Gene

T cell receptor alpha variable 4

TRAV6 Gene

T cell receptor alpha variable 6

TRAV7 Gene

T cell receptor alpha variable 7

OR2G3 Gene

olfactory receptor, family 2, subfamily G, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2G2 Gene

olfactory receptor, family 2, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2G6 Gene

olfactory receptor, family 2, subfamily G, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R14P Gene

vomeronasal 2 receptor 14 pseudogene

VN1R62P Gene

vomeronasal 1 receptor 62 pseudogene

NCCRP1 Gene

non-specific cytotoxic cell receptor protein 1 homolog (zebrafish)

TREML2 Gene

triggering receptor expressed on myeloid cells-like 2

TREML2 is located in a gene cluster on chromosome 6 with the single Ig variable (IgV) domain activating receptors TREM1 (MIM 605085) and TREM2 (MIM 605086), but it has distinct structural and functional properties (Allcock et al., 2003 [PubMed 12645956]).[supplied by OMIM, Mar 2008]

TREML1 Gene

triggering receptor expressed on myeloid cells-like 1

This gene encodes a member of the triggering receptor expressed on myeloid cells-like (TREM) family. The encoded protein is a type 1 single Ig domain orphan receptor localized to the alpha-granule membranes of platelets. The encoded protein is involved in platelet aggregation, inflammation, and cellular activation and has been linked to Gray platelet syndrome. Alternative splicing results in multiple transcript variants [provided by RefSeq, Nov 2012]

TREML4 Gene

triggering receptor expressed on myeloid cells-like 4

OR52E3P Gene

olfactory receptor, family 52, subfamily E, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R110P Gene

vomeronasal 1 receptor 110 pseudogene

OR51F4P Gene

olfactory receptor, family 51, subfamily F, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51T1 Gene

olfactory receptor, family 51, subfamily T, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

C1D Gene

C1D nuclear receptor corepressor

The protein encoded by this gene is a DNA binding and apoptosis-inducing protein and is localized in the nucleus. It is also a Rac3-interacting protein which acts as a corepressor for the thyroid hormone receptor. This protein is thought to regulate TRAX/Translin complex formation. Alternate splicing results in multiple transcript variants that encode the same protein. Multiple pseudogenes of this gene are found on chromosome 10.[provided by RefSeq, Jun 2010]

OR52J3 Gene

olfactory receptor, family 52, subfamily J, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR101 Gene

G protein-coupled receptor 101

The protein encoded by this gene is an orphan G protein-coupled receptor of unknown function. The encoded protein is a member of a family of proteins that contain seven transmembrane domains and transduce extracellular signals through heterotrimeric G proteins. [provided by RefSeq, Sep 2011]

GPR107 Gene

G protein-coupled receptor 107

GPR108 Gene

G protein-coupled receptor 108

GNRHR Gene

gonadotropin-releasing hormone receptor

This gene encodes the receptor for type 1 gonadotropin-releasing hormone. This receptor is a member of the seven-transmembrane, G-protein coupled receptor (GPCR) family. It is expressed on the surface of pituitary gonadotrope cells as well as lymphocytes, breast, ovary, and prostate. Following binding of gonadotropin-releasing hormone, the receptor associates with G-proteins that activate a phosphatidylinositol-calcium second messenger system. Activation of the receptor ultimately causes the release of gonadotropic luteinizing hormone (LH) and follicle stimulating hormone (FSH). Defects in this gene are a cause of hypogonadotropic hypogonadism (HH). Alternative splicing results in multiple transcript variants encoding different isoforms. More than 18 transcription initiation sites in the 5' region and multiple polyA signals in the 3' region have been identified for this gene. [provided by RefSeq, Jul 2008]

OR5V1 Gene

olfactory receptor, family 5, subfamily V, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LGR5 Gene

leucine-rich repeat containing G protein-coupled receptor 5

LGR4 Gene

leucine-rich repeat containing G protein-coupled receptor 4

G protein-coupled receptors (GPCRs) play key roles in a variety of physiologic functions. Members of the leucine-rich GPCR (LGR) family, such as GPR48, have multiple N-terminal leucine-rich repeats (LRRs) and a 7-transmembrane domain (Weng et al., 2008 [PubMed 18424556]).[supplied by OMIM, Aug 2008]

LGR6 Gene

leucine-rich repeat containing G protein-coupled receptor 6

This gene encodes a member of the leucine-rich repeat-containing subgroup of the G protein-coupled 7-transmembrane protein superfamily. The encoded protein is a glycoprotein hormone receptor with a large N-terminal extracellular domain that contains leucine-rich repeats important for the formation of a horseshoe-shaped interaction motif for ligand binding. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Jul 2008]

OR4C9P Gene

olfactory receptor, family 4, subfamily C, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2I1P Gene

olfactory receptor, family 2, subfamily I, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7L1P Gene

olfactory receptor, family 7, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105377827 Gene

scavenger receptor class F member 2-like

LOC100421006 Gene

very low density lipoprotein receptor pseudogene

OR1D5 Gene

olfactory receptor, family 1, subfamily D, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1D4 Gene

olfactory receptor, family 1, subfamily D, member 4 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2010]

OR1D2 Gene

olfactory receptor, family 1, subfamily D, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J2P Gene

olfactory receptor, family 10, subfamily J, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422061 Gene

olfactory receptor, family 11, subfamily H, member 4 pseudogene

LOC100422063 Gene

olfactory receptor, family 13, subfamily H, member 1 pseudogene

LOC100422062 Gene

olfactory receptor, family 11, subfamily A, member 1 pseudogene

OR7E163P Gene

olfactory receptor, family 7, subfamily E, member 163, pseudogene

NKTR Gene

natural killer cell triggering receptor

This gene encodes a membrane-anchored protein with a hydrophobic amino terminal domain and a cyclophilin-like PPIase domain. It is present on the surface of natural killer cells and facilitates their binding to targets. Its expression is regulated by IL2 activation of the cells. [provided by RefSeq, Jul 2008]

TFRC Gene

transferrin receptor

TFR2 Gene

transferrin receptor 2

This gene encodes a single-pass type II membrane protein, which is a member of the transferrin receptor-like family. This protein mediates cellular uptake of transferrin-bound iron, and may be involved in iron metabolism, hepatocyte function and erythrocyte differentiation. Mutations in this gene have been associated with hereditary hemochromatosis type III. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, May 2011]

OR8A3P Gene

olfactory receptor, family 8, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MLNR Gene

motilin receptor

Motilin is a 22 amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract. The protein encoded by this gene is a motilin receptor which is a member of the G-protein coupled receptor 1 family. This member is a multi-pass transmembrane protein, and is an important therapeutic target for the treatment of hypomotility disorders. [provided by RefSeq, Aug 2011]

VN1R59P Gene

vomeronasal 1 receptor 59 pseudogene

SMO Gene

smoothened, frizzled class receptor

The protein encoded by this gene is a G protein-coupled receptor that interacts with the patched protein, a receptor for hedgehog proteins. The encoded protein tranduces signals to other proteins after activation by a hedgehog protein/patched protein complex. [provided by RefSeq, Jul 2010]

CX3CR1 Gene

chemokine (C-X3-C motif) receptor 1

Fractalkine is a transmembrane protein and chemokine involved in the adhesion and migration of leukocytes. The protein encoded by this gene is a receptor for fractalkine. The encoded protein also is a coreceptor for HIV-1, and some variations in this gene lead to increased susceptibility to HIV-1 infection and rapid progression to AIDS. Four transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jan 2010]

OR4T1P Gene

olfactory receptor, family 4, subfamily T, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105376336 Gene

glutamate receptor ionotropic, NMDA 2D-like

MRBC Gene

Monkey RBC receptor

VN1R47P Gene

vomeronasal 1 receptor 47 pseudogene

TRAV22 Gene

T cell receptor alpha variable 22

TRAV21 Gene

T cell receptor alpha variable 21

RTN4R Gene

reticulon 4 receptor

This gene encodes the receptor for reticulon 4, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein. This receptor mediates axonal growth inhibition and may play a role in regulating axonal regeneration and plasticity in the adult central nervous system. [provided by RefSeq, Jul 2008]

TRAV27 Gene

T cell receptor alpha variable 27

TRAV25 Gene

T cell receptor alpha variable 25

TRAV24 Gene

T cell receptor alpha variable 24

TRAV28 Gene

T cell receptor alpha variable 28 (pseudogene)

TRBV25OR9-2 Gene

T cell receptor beta variable 25/OR9-2 (pseudogene)

OR7E128P Gene

olfactory receptor, family 7, subfamily E, member 128 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A13P Gene

olfactory receptor, family 4, subfamily A, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105379282 Gene

glucose-dependent insulinotropic receptor-like

ACVRL1 Gene

activin A receptor type II-like 1

This gene encodes a type I cell-surface receptor for the TGF-beta superfamily of ligands. It shares with other type I receptors a high degree of similarity in serine-threonine kinase subdomains, a glycine- and serine-rich region (called the GS domain) preceding the kinase domain, and a short C-terminal tail. The encoded protein, sometimes termed ALK1, shares similar domain structures with other closely related ALK or activin receptor-like kinase proteins that form a subfamily of receptor serine/threonine kinases. Mutations in this gene are associated with hemorrhagic telangiectasia type 2, also known as Rendu-Osler-Weber syndrome 2. [provided by RefSeq, Jul 2008]

OR6C5P Gene

olfactory receptor, family 6, subfamily C, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CXADRP2 Gene

coxsackie virus and adenovirus receptor pseudogene 2

CXADRP1 Gene

coxsackie virus and adenovirus receptor pseudogene 1

TAAR7P Gene

trace amine associated receptor 7, pseudogene

APOBR Gene

apolipoprotein B receptor

Apolipoprotein B48 receptor is a macrophage receptor that binds to the apolipoprotein B48 of dietary triglyceride (TG)-rich lipoproteins. This receptor may provide essential lipids, lipid-soluble vitamins and other nutrients to reticuloendothelial cells. If overwhelmed with elevated plasma triglyceride, the apolipoprotein B48 receptor may contribute to foam cell formation, endothelial dysfunction, and atherothrombogenesis. [provided by RefSeq, Jul 2008]

OR11H5P Gene

olfactory receptor, family 11, subfamily H, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL9RP4 Gene

interleukin 9 receptor pseudogene 4

VN1R86P Gene

vomeronasal 1 receptor 86 pseudogene

VN1R13P Gene

vomeronasal 1 receptor 13 pseudogene

TRDD3 Gene

T cell receptor delta diversity 3

TRDD2 Gene

T cell receptor delta diversity 2

TRDD1 Gene

T cell receptor delta diversity 1

LOC102725034 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

OR6A2 Gene

olfactory receptor, family 6, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4R1P Gene

olfactory receptor, family 4, subfamily R, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E11P Gene

olfactory receptor, family 7, subfamily E, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRDC Gene

T cell receptor delta constant

CR2 Gene

complement component (3d/Epstein Barr virus) receptor 2

This gene encodes a membrane protein, which functions as a receptor for Epstein-Barr virus (EBV) binding on B and T lymphocytes. Genetic variations in this gene are associated with susceptibility to systemic lupus erythematosus type 9 (SLEB9). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Sep 2009]

CR1 Gene

complement component (3b/4b) receptor 1 (Knops blood group)

This gene is a member of the receptors of complement activation (RCA) family and is located in the 'cluster RCA' region of chromosome 1. The gene encodes a monomeric single-pass type I membrane glycoprotein found on erythrocytes, leukocytes, glomerular podocytes, and splenic follicular dendritic cells. The Knops blood group system is a system of antigens located on this protein. The protein mediates cellular binding to particles and immune complexes that have activated complement. Decreases in expression of this protein and/or mutations in its gene have been associated with gallbladder carcinomas, mesangiocapillary glomerulonephritis, systemic lupus erythematosus and sarcoidosis. Mutations in this gene have also been associated with a reduction in Plasmodium falciparum rosetting, conferring protection against severe malaria. Alternate allele-specific splice variants, encoding different isoforms, have been characterized. Additional allele specific isoforms, including a secreted form, have been described but have not been fully characterized. [provided by RefSeq, Jul 2008]

OR7A1P Gene

olfactory receptor, family 7, subfamily A, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ARNTL2 Gene

aryl hydrocarbon receptor nuclear translocator-like 2

This gene encodes a basic helix-loop-helix transcription factor belonging to the PAS (PER, ARNT, SIM) superfamily. The PAS proteins play important roles in adaptation to low atmospheric and cellular oxygen levels, exposure to certain environmental pollutants, and diurnal oscillations in light and temperature. This protein forms a transcriptionally active heterodimer with the circadian CLOCK protein, the structurally related MOP4, and hypoxia-inducible factors, such as HIF1alpha. Consistent with its role as a biologically relevant partner of circadian and hypoxia factors, this protein is coexpressed in regions of the brain such as the thalamus, hypothalamus, and amygdala. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]

OR7A17 Gene

olfactory receptor, family 7, subfamily A, member 17

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRG-AS1 Gene

T cell receptor gamma locus antisense RNA 1

LOC100421989 Gene

olfactory receptor, family 2, subfamily V, member 2 pseudogene

LOC100421985 Gene

olfactory receptor, family 8, subfamily B, member 3 pseudogene

LOC100421984 Gene

olfactory receptor, family 8, subfamily B, member 8 pseudogene

LOC100418631 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418633 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

LOC100418632 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418634 Gene

olfactory receptor, family 2, subfamily G, member 6 pseudogene

LOC100418637 Gene

olfactory receptor, family 2, subfamily J, member 3 pseudogene

LOC100418636 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418639 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

LOC100418638 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100422185 Gene

olfactory receptor, family 4, subfamily K, member 15 pseudogene

LOC100422182 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422181 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

OR10AK1P Gene

olfactory receptor, family 10, subfamily AK, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AL2P Gene

olfactory receptor, family 5, subfamily AL, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC441228 Gene

exportin, tRNA (nuclear export receptor for tRNAs) pseudogene

OR51L1 Gene

olfactory receptor, family 51, subfamily L, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CUBN Gene

cubilin (intrinsic factor-cobalamin receptor)

Cubilin (CUBN) acts as a receptor for intrinsic factor-vitamin B12 complexes. The role of receptor is supported by the presence of 27 CUB domains. Cubulin is located within the epithelium of intestine and kidney. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. [provided by RefSeq, Jul 2008]

OR52B2 Gene

olfactory receptor, family 52, subfamily B, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52B6 Gene

olfactory receptor, family 52, subfamily B, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52B4 Gene

olfactory receptor, family 52, subfamily B, member 4 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR182 Gene

G protein-coupled receptor 182

Adrenomedullin is a potent vasodilator peptide that exerts major effects on cardiovascular function. This gene encodes a seven-transmembrane protein that belongs to the family 1 of G-protein coupled receptors. Studies of the rat counterpart suggest that the encoded protein may function as a receptor for adrenomedullin. [provided by RefSeq, Jul 2008]

GPR183 Gene

G protein-coupled receptor 183

This gene was identified by the up-regulation of its expression upon Epstein-Barr virus infection of primary B lymphocytes. This gene is predicted to encode a G protein-coupled receptor that is most closely related to the thrombin receptor. Expression of this gene was detected in B-lymphocyte cell lines and lymphoid tissues but not in T-lymphocyte cell lines or peripheral blood T lymphocytes. The function of this gene is unknown. [provided by RefSeq, Jul 2008]

CCR12P Gene

chemokine (C-C motif) receptor 12, pseudogene

GPR89P Gene

G protein-coupled receptor 89 pseudogene

OR10G1P Gene

olfactory receptor, family 10, subfamily G, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BB1P Gene

olfactory receptor, family 5, subfamily BB, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GLRA3 Gene

glycine receptor, alpha 3

This gene encodes a member of the ligand-gated ion channel protein family. The encoded protein is a member of the glycine receptor subfamily. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2013]

GLRA2 Gene

glycine receptor, alpha 2

The glycine receptor consists of two subunits, alpha and beta, and acts as a pentamer. The protein encoded by this gene is an alpha subunit and can bind strychnine. Several transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Jan 2010]

GLRA4 Gene

glycine receptor, alpha 4

This gene encodes a protein which has a neurotransmitter-gated ion-channel ligand binding domain. The encoded protein is very similar to a mouse protein which is a subunit of the retinal glycine receptor. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]

LOC100422108 Gene

olfactory receptor, family 4, subfamily F, member 21 pseudogene

OR4C15 Gene

olfactory receptor, family 4, subfamily C, member 15

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C16 Gene

olfactory receptor, family 4, subfamily C, member 16 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C11 Gene

olfactory receptor, family 4, subfamily C, member 11

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C13 Gene

olfactory receptor, family 4, subfamily C, member 13

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C12 Gene

olfactory receptor, family 4, subfamily C, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TGFBR2 Gene

transforming growth factor, beta receptor II (70/80kDa)

This gene encodes a member of the Ser/Thr protein kinase family and the TGFB receptor subfamily. The encoded protein is a transmembrane protein that has a protein kinase domain, forms a heterodimeric complex with another receptor protein, and binds TGF-beta. This receptor/ligand complex phosphorylates proteins, which then enter the nucleus and regulate the transcription of a subset of genes related to cell proliferation. Mutations in this gene have been associated with Marfan Syndrome, Loeys-Deitz Aortic Aneurysm Syndrome, and the development of various types of tumors. Alternatively spliced transcript variants encoding different isoforms have been characterized. [provided by RefSeq, Jul 2008]

TGFBR1 Gene

transforming growth factor, beta receptor 1

The protein encoded by this gene forms a heteromeric complex with type II TGF-beta receptors when bound to TGF-beta, transducing the TGF-beta signal from the cell surface to the cytoplasm. The encoded protein is a serine/threonine protein kinase. Mutations in this gene have been associated with Loeys-Dietz aortic aneurysm syndrome (LDAS). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]

OR2AJ1 Gene

olfactory receptor, family 2, subfamily AJ, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AN2P Gene

olfactory receptor, family 5, subfamily AN, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K4P Gene

olfactory receptor, family 4, subfamily K, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AR1 Gene

olfactory receptor, family 5, subfamily AR, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PNRC1 Gene

proline-rich nuclear receptor coactivator 1

PNRC2 Gene

proline-rich nuclear receptor coactivator 2

PRLR Gene

prolactin receptor

This gene encodes a receptor for the anterior pituitary hormone, prolactin, and belongs to the type I cytokine receptor family. Prolactin-dependent signaling occurs as the result of ligand-induced dimerization of the prolactin receptor. Several alternatively spliced transcript variants encoding different membrane-bound and soluble isoforms have been described for this gene, which may function to modulate the endocrine and autocrine effects of prolactin in normal tissue and cancer. [provided by RefSeq, Feb 2011]

LOC100422252 Gene

olfactory receptor, family 11, subfamily H, member 12 pseudogene

OR1L8 Gene

olfactory receptor, family 1, subfamily L, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1L4 Gene

olfactory receptor, family 1, subfamily L, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1L6 Gene

olfactory receptor, family 1, subfamily L, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1L1 Gene

olfactory receptor, family 1, subfamily L, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1L3 Gene

olfactory receptor, family 1, subfamily L, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A42P Gene

olfactory receptor, family 4, subfamily A, member 42 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R6P Gene

vomeronasal 1 receptor 6 pseudogene

OR7E111P Gene

olfactory receptor, family 7, subfamily E, member 111 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R54P Gene

vomeronasal 1 receptor 54 pseudogene

OR7E43P Gene

olfactory receptor, family 7, subfamily E, member 43 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R101P Gene

vomeronasal 1 receptor 101 pseudogene

VN1R33P Gene

vomeronasal 1 receptor 33 pseudogene

VN1R104P Gene

vomeronasal 1 receptor 104 pseudogene

LOC100421998 Gene

olfactory receptor, family 4, subfamily C, member 6 pseudogene

TGFBRAP1 Gene

transforming growth factor, beta receptor associated protein 1

LOC100421990 Gene

olfactory receptor, family 4, subfamily B, member 1 pseudogene

LOC100421993 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100287357 Gene

coxsackie virus and adenovirus receptor pseudogene

LOC102725179 Gene

tyrosine-protein phosphatase non-receptor type 20-like

PTGER4 Gene

prostaglandin E receptor 4 (subtype EP4)

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein is one of four receptors identified for prostaglandin E2 (PGE2). This receptor can activate T-cell factor signaling. It has been shown to mediate PGE2 induced expression of early growth response 1 (EGR1), regulate the level and stability of cyclooxygenase-2 mRNA, and lead to the phosphorylation of glycogen synthase kinase-3. Knockout studies in mice suggest that this receptor may be involved in the neonatal adaptation of circulatory system, osteoporosis, as well as initiation of skin immune responses. [provided by RefSeq, Jul 2008]

PTGER1 Gene

prostaglandin E receptor 1 (subtype EP1), 42kDa

The protein encoded by this gene is a member of the G protein-coupled receptor family. This protein is one of four receptors identified for prostaglandin E2 (PGE2). Through a phosphatidylinositol-calcium second messenger system, G-Q proteins mediate this receptor's activity. Knockout studies in mice suggested a role of this receptor in mediating algesia and in regulation of blood pressure. Studies in mice also suggested that this gene may mediate adrenocorticotropic hormone response to bacterial endotoxin. [provided by RefSeq, Jul 2008]

PTGER2 Gene

prostaglandin E receptor 2 (subtype EP2), 53kDa

This gene encodes a receptor for prostaglandin E2, a metabolite of arachidonic acid which has different biologic activities in a wide range of tissues. Mutations in this gene are associated with aspirin-induced susceptibility to asthma. [provided by RefSeq, Oct 2009]

PTGER3 Gene

prostaglandin E receptor 3 (subtype EP3)

The protein encoded by this gene is a member of the G-protein coupled receptor family. This protein is one of four receptors identified for prostaglandin E2 (PGE2). This receptor may have many biological functions, which involve digestion, nervous system, kidney reabsorption, and uterine contraction activities. Studies of the mouse counterpart suggest that this receptor may also mediate adrenocorticotropic hormone response as well as fever generation in response to exogenous and endogenous stimuli. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2009]

OR13C4 Gene

olfactory receptor, family 13, subfamily C, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C5 Gene

olfactory receptor, family 13, subfamily C, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C7 Gene

olfactory receptor, family 13, subfamily C, member 7 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C2 Gene

olfactory receptor, family 13, subfamily C, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C3 Gene

olfactory receptor, family 13, subfamily C, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C8 Gene

olfactory receptor, family 13, subfamily C, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13C9 Gene

olfactory receptor, family 13, subfamily C, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TNFRSF8 Gene

tumor necrosis factor receptor superfamily, member 8

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is expressed by activated, but not by resting, T and B cells. TRAF2 and TRAF5 can interact with this receptor, and mediate the signal transduction that leads to the activation of NF-kappaB. This receptor is a positive regulator of apoptosis, and also has been shown to limit the proliferative potential of autoreactive CD8 effector T cells and protect the body against autoimmunity. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

TNFRSF9 Gene

tumor necrosis factor receptor superfamily, member 9

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contributes to the clonal expansion, survival, and development of T cells. It can also induce proliferation in peripheral monocytes, enhance T cell apoptosis induced by TCR/CD3 triggered activation, and regulate CD28 co-stimulation to promote Th1 cell responses. The expression of this receptor is induced by lymphocyte activation. TRAF adaptor proteins have been shown to bind to this receptor and transduce the signals leading to activation of NF-kappaB. [provided by RefSeq, Jul 2008]

TNFRSF4 Gene

tumor necrosis factor receptor superfamily, member 4

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor has been shown to activate NF-kappaB through its interaction with adaptor proteins TRAF2 and TRAF5. Knockout studies in mice suggested that this receptor promotes the expression of apoptosis inhibitors BCL2 and BCL2lL1/BCL2-XL, and thus suppresses apoptosis. The knockout studies also suggested the roles of this receptor in CD4+ T cell response, as well as in T cell-dependent B cell proliferation and differentiation. [provided by RefSeq, Jul 2008]

TRBV22OR9-2 Gene

T cell receptor beta variable 22/OR9-2 (pseudogene)

LCOR Gene

ligand dependent nuclear receptor corepressor

LCOR is a transcriptional corepressor widely expressed in fetal and adult tissues that is recruited to agonist-bound nuclear receptors through a single LxxLL motif, also referred to as a nuclear receptor (NR) box (Fernandes et al., 2003 [PubMed 12535528]).[supplied by OMIM, Mar 2008]

OR4F28P Gene

olfactory receptor, family 4, subfamily F, member 28 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OXTR Gene

oxytocin receptor

The protein encoded by this gene belongs to the G-protein coupled receptor family and acts as a receptor for oxytocin. Its activity is mediated by G proteins which activate a phosphatidylinositol-calcium second messenger system. The oxytocin-oxytocin receptor system plays an important role in the uterus during parturition. [provided by RefSeq, Jul 2008]

EPS8 Gene

epidermal growth factor receptor pathway substrate 8

This gene encodes a member of the EPS8 family. This protein contains one PH domain and one SH3 domain. It functions as part of the EGFR pathway, though its exact role has not been determined. Highly similar proteins in other organisms are involved in the transduction of signals from Ras to Rac and growth factor-mediated actin remodeling. Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

FCGRT Gene

Fc fragment of IgG, receptor, transporter, alpha

This gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G. The encoded protein transfers immunoglobulin G antibodies from mother to fetus across the placenta. This protein also binds immunoglobulin G to protect the antibody from degradation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2009]

LOC100887081 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 6 pseudogene

OR7M1P Gene

olfactory receptor, family 7, subfamily M, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AH1P Gene

olfactory receptor, family 5, subfamily AH, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421169 Gene

thyroid hormone receptor interactor 11 pseudogene

IRS4 Gene

insulin receptor substrate 4

IRS4 encodes the insulin receptor substrate 4, a cytoplasmic protein that contains many potential tyrosine and serine/threonine phosphorylation sites. Tyrosine-phosphorylated IRS4 protein has been shown to associate with cytoplasmic signalling molecules that contain SH2 domains. The IRS4 protein is phosphorylated by the insulin receptor tyrosine kinase upon receptor stimulation.. [provided by RefSeq, Jul 2008]

IRS1 Gene

insulin receptor substrate 1

This gene encodes a protein which is phosphorylated by insulin receptor tyrosine kinase. Mutations in this gene are associated with type II diabetes and susceptibility to insulin resistance. [provided by RefSeq, Nov 2009]

IRS2 Gene

insulin receptor substrate 2

This gene encodes the insulin receptor substrate 2, a cytoplasmic signaling molecule that mediates effects of insulin, insulin-like growth factor 1, and other cytokines by acting as a molecular adaptor between diverse receptor tyrosine kinases and downstream effectors. The product of this gene is phosphorylated by the insulin receptor tyrosine kinase upon receptor stimulation, as well as by an interleukin 4 receptor-associated kinase in response to IL4 treatment. [provided by RefSeq, Jul 2008]

OR10Q1 Gene

olfactory receptor, family 10, subfamily Q, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RAPSN Gene

receptor-associated protein of the synapse

This gene encodes a member of a family of proteins that are receptor associated proteins of the synapse. The encoded protein contains a conserved cAMP-dependent protein kinase phosphorylation site, and plays a critical role in clustering and anchoring nicotinic acetylcholine receptors at synaptic sites by linking the receptors to the underlying postsynaptic cytoskeleton, possibly by direct association with actin or spectrin. Mutations in this gene may play a role in postsynaptic congenital myasthenic syndromes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Apr 2011]

ROBO2 Gene

roundabout, axon guidance receptor, homolog 2 (Drosophila)

The protein encoded by this gene belongs to the ROBO family, part of the immunoglobulin superfamily of proteins that are highly conserved from fly to human. The encoded protein is a transmembrane receptor for the slit homolog 2 protein and functions in axon guidance and cell migration. Mutations in this gene are associated with vesicoureteral reflux, characterized by the backward flow of urine from the bladder into the ureters or the kidney. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

LOC391771 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

TRGV6 Gene

T cell receptor gamma variable 6 (pseudogene)

TRGV7 Gene

T cell receptor gamma variable 7 (pseudogene)

TRGV4 Gene

T cell receptor gamma variable 4

TRGV5 Gene

T cell receptor gamma variable 5

TRGV2 Gene

T cell receptor gamma variable 2

TRGV3 Gene

T cell receptor gamma variable 3

TRGV1 Gene

T cell receptor gamma variable 1 (non-functional)

TRGV8 Gene

T cell receptor gamma variable 8

TRGV9 Gene

T cell receptor gamma variable 9

TRPV5 Gene

transient receptor potential cation channel, subfamily V, member 5

This gene is a member of the transient receptor family and the TrpV subfamily. The calcium-selective channel encoded by this gene has 6 transmembrane-spanning domains, multiple potential phosphorylation sites, an N-linked glycosylation site, and 5 ANK repeats. This protein forms homotetramers or heterotetramers and is activated by a low internal calcium level. [provided by RefSeq, Jul 2008]

TRPV4 Gene

transient receptor potential cation channel, subfamily V, member 4

This gene encodes a member of the OSM9-like transient receptor potential channel (OTRPC) subfamily in the transient receptor potential (TRP) superfamily of ion channels. The encoded protein is a Ca2+-permeable, nonselective cation channel that is thought to be involved in the regulation of systemic osmotic pressure. Mutations in this gene are the cause of spondylometaphyseal and metatropic dysplasia and hereditary motor and sensory neuropathy type IIC. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2010]

TRPV6 Gene

transient receptor potential cation channel, subfamily V, member 6

This gene encodes a member of a family of multipass membrane proteins that functions as calcium channels. The encoded protein contains N-terminal ankyrin repeats, which are required for channel assembly and regulation. Translation initiation for this protein occurs at a non-AUG start codon that is decoded as methionine. This gene is situated next to a closely related gene for transient receptor potential cation channel subfamily V member 5 (TRPV5). This locus has experienced positive selection in non-African populations, resulting in several non-synonymous codon differences among individuals of different genetic backgrounds. [provided by RefSeq, Feb 2015]

TRPV1 Gene

transient receptor potential cation channel, subfamily V, member 1

Capsaicin, the main pungent ingredient in hot chili peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. The protein encoded by this gene is a receptor for capsaicin and is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. This receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo. Four transcript variants encoding the same protein, but with different 5' UTR sequence, have been described for this gene. [provided by RefSeq, Jul 2008]

TRPV3 Gene

transient receptor potential cation channel, subfamily V, member 3

This gene product belongs to a family of nonselective cation channels that function in a variety of processes, including temperature sensation and vasoregulation. The thermosensitive members of this family are expressed in subsets of sensory neurons that terminate in the skin, and are activated at distinct physiological temperatures. This channel is activated at temperatures between 22 and 40 degrees C. This gene lies in close proximity to another family member gene on chromosome 17, and the two encoded proteins are thought to associate with each other to form heteromeric channels. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2012]

TRPV2 Gene

transient receptor potential cation channel, subfamily V, member 2

This gene encodes an ion channel that is activated by high temperatures above 52 degrees Celsius. The protein may be involved in transduction of high-temperature heat responses in sensory ganglia. It is thought that in other tissues the channel may be activated by stimuli other than heat. [provided by RefSeq, Jul 2008]

TRGVB Gene

T cell receptor gamma variable B (pseudogene)

TRGVA Gene

T cell receptor gamma variable A (pseudogene)

FGFR4 Gene

fibroblast growth factor receptor 4

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. The genomic organization of this gene, compared to members 1-3, encompasses 18 exons rather than 19 or 20. Although alternative splicing has been observed, there is no evidence that the C-terminal half of the IgIII domain of this protein varies between three alternate forms, as indicated for members 1-3. This particular family member preferentially binds acidic fibroblast growth factor and, although its specific function is unknown, it is overexpressed in gynecological tumor samples, suggesting a role in breast and ovarian tumorigenesis. [provided by RefSeq, Jul 2008]

FGFR2 Gene

fibroblast growth factor receptor 2

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform. Mutations in this gene are associated with Crouzon syndrome, Pfeiffer syndrome, Craniosynostosis, Apert syndrome, Jackson-Weiss syndrome, Beare-Stevenson cutis gyrata syndrome, Saethre-Chotzen syndrome, and syndromic craniosynostosis. Multiple alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]

FGFR3 Gene

fibroblast growth factor receptor 3

This gene encodes a member of the fibroblast growth factor receptor (FGFR) family, with its amino acid sequence being highly conserved between members and among divergent species. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds acidic and basic fibroblast growth hormone and plays a role in bone development and maintenance. Mutations in this gene lead to craniosynostosis and multiple types of skeletal dysplasia. Three alternatively spliced transcript variants that encode different protein isoforms have been described. [provided by RefSeq, Jul 2009]

FGFR1 Gene

fibroblast growth factor receptor 1

The protein encoded by this gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds both acidic and basic fibroblast growth factors and is involved in limb induction. Mutations in this gene have been associated with Pfeiffer syndrome, Jackson-Weiss syndrome, Antley-Bixler syndrome, osteoglophonic dysplasia, and autosomal dominant Kallmann syndrome 2. Chromosomal aberrations involving this gene are associated with stem cell myeloproliferative disorder and stem cell leukemia lymphoma syndrome. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized. [provided by RefSeq, Jul 2008]

AVPR2 Gene

arginine vasopressin receptor 2

This gene encodes the vasopressin receptor, type 2, also known as the V2 receptor, which belongs to the seven-transmembrane-domain G protein-coupled receptor (GPCR) superfamily, and couples to Gs thus stimulating adenylate cyclase. The subfamily that includes the V2 receptor, the V1a and V1b vasopressin receptors, the oxytocin receptor, and isotocin and mesotocin receptors in non-mammals, is well conserved, though several members signal via other G proteins. All bind similar cyclic nonapeptide hormones. The V2 receptor is expressed in the kidney tubule, predominantly in the distal convoluted tubule and collecting ducts, where its primary property is to respond to the pituitary hormone arginine vasopressin (AVP) by stimulating mechanisms that concentrate the urine and maintain water homeostasis in the organism. When the function of this gene is lost, the disease Nephrogenic Diabetes Insipidus (NDI) results. The V2 receptor is also expressed outside the kidney although its tissue localization is uncertain. When these 'extrarenal receptors' are stimulated by infusion of a V2 selective agonist (dDAVP), a variety of clotting factors are released into the bloodstream. The physiologic importance of this property is not known - its absence does not appear to be detrimental in NDI patients. The gene expression has also been described in fetal lung tissue and lung cancer associated with alternative splicing. [provided by RefSeq, Jul 2008]

PTGFR Gene

prostaglandin F receptor (FP)

The protein encoded by this gene is member of the G-protein coupled receptor family. This protein is a receptor for prostaglandin F2-alpha (PGF2-alpha), which is known to be a potent luteolytic agent, and may also be involved in modulating intraocular pressure and smooth muscle contraction in uterus. Knockout studies in mice suggest that the interaction of PGF2-alpha with this receptor may initiate parturition in ovarian luteal cells and thus induce luteolysis. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

OR7E19P Gene

olfactory receptor, family 7, subfamily E, member 19 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAT1 Gene

T cell receptor associated transmembrane adaptor 1

LOC102725031 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

OR4W1P Gene

olfactory receptor, family 4, subfamily W, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13D1 Gene

olfactory receptor, family 13, subfamily D, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NCOA4P1 Gene

nuclear receptor coactivator 4 pseudogene 1

OR8X1P Gene

olfactory receptor, family 8, subfamily X, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR12D1 Gene

olfactory receptor, family 12, subfamily D, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR12D2 Gene

olfactory receptor, family 12, subfamily D, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR12D3 Gene

olfactory receptor, family 12, subfamily D, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

BRS3 Gene

bombesin-like receptor 3

The protein encoded by this gene is a G protein-coupled membrane receptor that binds bombesin-like peptides. This binding results in activation of a phosphatidylinositol-calcium second messenger system, with physiological effects including regulation of metabolic rate, glucose metabolism, and hypertension. [provided by RefSeq, Sep 2011]

LOC100422104 Gene

olfactory receptor, family 7, subfamily A, member 17 pseudogene

LOC100422102 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422100 Gene

olfactory receptor, family 6, subfamily C, member 65 pseudogene

LOC100422101 Gene

olfactory receptor, family 4, subfamily F, member 21 pseudogene

OR2W3 Gene

olfactory receptor, family 2, subfamily W, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2W1 Gene

olfactory receptor, family 2, subfamily W, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2W5 Gene

olfactory receptor, family 2, subfamily W, member 5 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. This olfactory receptor gene has a coding sequence that is comparable in length to other olfactory receptor genes, but it should be noted that a frameshift is present in the 3' coding region that disrupts the 7-transmembrane domain structure in the protein. It is unclear if the protein can function as an olfactory receptor or if an alternate function is served. For this reason, this gene has also been interpreted to be a pseudogene. [provided by RefSeq, Jan 2010]

KIR2DL5B Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5B

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DL5A Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5A

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

OR7E136P Gene

olfactory receptor, family 7, subfamily E, member 136 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51D1 Gene

olfactory receptor, family 51, subfamily D, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C50P Gene

olfactory receptor, family 4, subfamily C, member 50 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HCRTR2 Gene

hypocretin (orexin) receptor 2

The protein encoded by this gene is a G-protein coupled receptor involved in the regulation of feeding behavior. The encoded protein binds the hypothalamic neuropeptides orexin A and orexin B. A related gene (HCRTR1) encodes a G-protein coupled receptor that selectively binds orexin A. [provided by RefSeq, Jan 2009]

OR52E8 Gene

olfactory receptor, family 52, subfamily E, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5F1 Gene

olfactory receptor, family 5, subfamily F, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAJ58 Gene

T cell receptor alpha joining 58 (non-functional)

TRAJ56 Gene

T cell receptor alpha joining 56

TRAJ57 Gene

T cell receptor alpha joining 57

TRAJ54 Gene

T cell receptor alpha joining 54

OR5J1P Gene

olfactory receptor, family 5, subfamily J, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR2C2 Gene

nuclear receptor subfamily 2, group C, member 2

This gene encodes a protein that belongs to the nuclear hormone receptor family. Members of this family act as ligand-activated transcription factors and function in many biological processes such as development, cellular differentiation and homeostasis. The activated receptor/ligand complex is translocated to the nucleus where it binds to hormone response elements of target genes. The protein encoded by this gene plays a role in protecting cells from oxidative stress and damage induced by ionizing radiation. The lack of a similar gene in mouse results in growth retardation, severe spinal curvature, subfertility, premature aging, and prostatic intraepithelial neoplasia (PIN) development. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2014]

NR2C1 Gene

nuclear receptor subfamily 2, group C, member 1

This gene encodes a nuclear hormone receptor characterized by a highly conserved DNA binding domain (DBD), a variable hinge region, and a carboxy-terminal ligand binding domain (LBD) that is typical for all members of the steroid/thyroid hormone receptor superfamily. This protein also belongs to a large family of ligand-inducible transcription factors that regulate gene expression by binding to specific DNA sequences within promoters of target genes. Multiple alternatively spliced transcript variants have been described, but the full-length nature of some of these variants has not been determined. [provided by RefSeq, Jul 2008]

OR52W1 Gene

olfactory receptor, family 52, subfamily W, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M4P Gene

olfactory receptor, family 5, subfamily M, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GOSR2 Gene

golgi SNAP receptor complex member 2

This gene encodes a trafficking membrane protein which transports proteins among the medial- and trans-Golgi compartments. Due to its chromosomal location and trafficking function, this gene may be involved in familial essential hypertension. Three transcript variants encoding three different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GPR22 Gene

G protein-coupled receptor 22

This gene is a member of the G-protein coupled receptor 1 family and encodes a multi-pass membrane protein. [provided by RefSeq, Jul 2008]

GPR20 Gene

G protein-coupled receptor 20

GPR21 Gene

G protein-coupled receptor 21

This gene encodes a member of the G-protein-coupled receptor 1 family. G-protein coupled receptors are membrane proteins which activate signaling cascades as a response to extracellular stress. The encoded protein activates a Gq signal transduction pathway which mobilizes calcium. [provided by RefSeq, Nov 2012]

GPR26 Gene

G protein-coupled receptor 26

GPR27 Gene

G protein-coupled receptor 27

GPR27 is a member of the G protein-coupled receptors (GPCRs), a large family of receptors that have a similar structure characterized by 7 transmembrane domains. Activation of GPCRs by extracellular stimuli such as neurotransmitters, hormones, or light induces an intracellular signaling cascade mediated by heterotrimeric GTP-binding proteins, or G proteins.[supplied by OMIM, May 2010]

GPR25 Gene

G protein-coupled receptor 25

This gene is intronless and encodes a member of the G-protein coupled receptor 1 family. G-protein coupled receptors are membrane proteins which activate signaling cascades as a response to extracellular stress. This gene has been linked to arterial stiffness. [provided by RefSeq, Nov 2012]

FCRL5 Gene

Fc receptor-like 5

This gene encodes a member of the immunoglobulin receptor superfamily and the Fc-receptor like family. This gene and several other Fc receptor-like gene members are clustered on the long arm of chromosome 1. The encoded protein is a single-pass type I membrane protein and contains 8 immunoglobulin-like C2-type domains. This gene is implicated in B cell development and lymphomagenesis. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Sep 2010]

OR4S1 Gene

olfactory receptor, family 4, subfamily S, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4S2 Gene

olfactory receptor, family 4, subfamily S, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV26-1 Gene

T cell receptor alpha variable 26-1

TRAV26-2 Gene

T cell receptor alpha variable 26-2

OR8B10P Gene

olfactory receptor, family 8, subfamily B, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R8 Gene

taste receptor, type 2, member 8

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

VN1R27P Gene

vomeronasal 1 receptor 27 pseudogene

OR2B4P Gene

olfactory receptor, family 2, subfamily B, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R1 Gene

taste receptor, type 2, member 1

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. This intronless taste receptor gene encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is mapped to chromosome 5p15, the location of a genetic locus (PROP) that controls the detection of the bitter compound 6-n-propyl-2-thiouracil. [provided by RefSeq, Jul 2008]

TRBV22-1 Gene

T cell receptor beta variable 22-1 (pseudogene)

VN1R109P Gene

vomeronasal 1 receptor 109 pseudogene

OR52A4P Gene

olfactory receptor, family 52, subfamily A, member 4, pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. Although originally considered to be a functional olfactory receptor, this family member is now considered to be pseudogene due to the presence of a C-terminal frameshift compared to other family members; this is also consistent with the Classifier for Olfactory Receptor Pseudogenes (CORP), as described in PMID:16939646. [provided by RefSeq, Jun 2011]

SSTR3 Gene

somatostatin receptor 3

This gene encodes a member of the somatostatin receptor protein family. Somatostatins are peptide hormones that regulate diverse cellular functions such as neurotransmission, cell proliferation, and endocrine signaling as well as inhibiting the release of many hormones and other secretory proteins. Somatostatin has two active forms of 14 and 28 amino acids. The biological effects of somatostatins are mediated by a family of G-protein coupled somatostatin receptors that are expressed in a tissue-specific manner. Somatostatin receptors form homodimers and heterodimers with other members of the superfamily as well as with other G-protein coupled receptors and receptor tyrosine kinases. This protein is functionally coupled to adenylyl cyclase. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

SSTR2 Gene

somatostatin receptor 2

Somatostatin acts at many sites to inhibit the release of many hormones and other secretory proteins. The biologic effects of somatostatin are probably mediated by a family of G protein-coupled receptors that are expressed in a tissue-specific manner. SSTR2 is a member of the superfamily of receptors having seven transmembrane segments and is expressed in highest levels in cerebrum and kidney. [provided by RefSeq, Jul 2008]

SSTR5 Gene

somatostatin receptor 5

Somatostatin and its related peptide cortistatin exert multiple biological actions on normal and tumoral tissue targets by interacting with somatostatin receptors (SSTRs). The protein encoded by this gene is one of the SSTRs, which is a multi-pass membrane protein and belongs to the G-protein coupled receptor 1 family. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase, and different regions of this receptor molecule are required for the activation of different signaling pathways. A mutation in this gene results in somatostatin analog resistance. Alternatively spliced transcript variants have been identified in this gene.[provided by RefSeq, Feb 2010]

SSTR4 Gene

somatostatin receptor 4

Somatostatin acts at many sites to inhibit the release of many hormones and other secretory proteins. The biologic effects of somatostatin are probably mediated by a family of G protein-coupled receptors that are expressed in a tissue-specific manner. SSTR4 is a member of the superfamily of receptors having seven transmembrane segments and is expressed in highest levels in fetal and adult brain and lung. [provided by RefSeq, Jul 2008]

LDLRAP1 Gene

low density lipoprotein receptor adaptor protein 1

The protein encoded by this gene is a cytosolic protein which contains a phosphotyrosine binding (PTD) domain. The PTD domain has been found to interact with the cytoplasmic tail of the LDL receptor. Mutations in this gene lead to LDL receptor malfunction and cause the disorder autosomal recessive hypercholesterolaemia. [provided by RefSeq, Jul 2008]

OR6C69P Gene

olfactory receptor, family 6, subfamily C, member 69 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BC1P Gene

olfactory receptor, family 5, subfamily BC, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LBR Gene

lamin B receptor

The protein encoded by this gene belongs to the ERG4/ERG24 family. It localized in the nuclear envelope inner membrane and anchors the lamina and the heterochromatin to the membrane. It may mediate interaction between chromatin and lamin B. Mutations of this gene has been associated with autosomal recessive HEM/Greenberg skeletal dysplasia. Alternative splicing occurs at this locus and two transcript variants encoding the same protein have been identified. [provided by RefSeq, Jul 2008]

TRAV9-1 Gene

T cell receptor alpha variable 9-1

TRAV9-2 Gene

T cell receptor alpha variable 9-2

GABRA5 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 5

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. Transcript variants utilizing three different alternative non-coding first exons have been described. [provided by RefSeq, Jul 2008]

GABRA4 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 4

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. This gene encodes subunit alpha-4, which is involved in the etiology of autism and eventually increases autism risk through interaction with another subunit, gamma-aminobutyric acid receptor beta-1 (GABRB1). Alternatively spliced transcript variants encoding different isoforms have been found in this gene.[provided by RefSeq, Feb 2011]

GABRA6 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 6

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. [provided by RefSeq, Jul 2008]

GABRA1 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 1

This gene encodes a gamma-aminobutyric acid (GABA) receptor. GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. GABA-A receptors are pentameric, consisting of proteins from several subunit classes: alpha, beta, gamma, delta and rho. Mutations in this gene cause juvenile myoclonic epilepsy and childhood absence epilepsy type 4. Multiple transcript variants encoding the same protein have been identified for this gene. [provided by RefSeq, Jul 2008]

GABRA3 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 3

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. [provided by RefSeq, Jul 2008]

GABRA2 Gene

gamma-aminobutyric acid (GABA) A receptor, alpha 2

GABA is the major inhibitory neurotransmitter in the mammalian brain where it acts at GABA-A receptors, which are ligand-gated chloride channels. Chloride conductance of these channels can be modulated by agents such as benzodiazepines that bind to the GABA-A receptor. At least 16 distinct subunits of GABA-A receptors have been identified. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]

GRIA2 Gene

glutamate receptor, ionotropic, AMPA 2

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. This gene product belongs to a family of glutamate receptors that are sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and function as ligand-activated cation channels. These channels are assembled from 4 related subunits, GRIA1-4. The subunit encoded by this gene (GRIA2) is subject to RNA editing (CAG->CGG; Q->R) within the second transmembrane domain, which is thought to render the channel impermeable to Ca(2+). Human and animal studies suggest that pre-mRNA editing is essential for brain function, and defective GRIA2 RNA editing at the Q/R site may be relevant to amyotrophic lateral sclerosis (ALS) etiology. Alternative splicing, resulting in transcript variants encoding different isoforms, (including the flip and flop isoforms that vary in their signal transduction properties), has been noted for this gene. [provided by RefSeq, Jul 2008]

GRIA1 Gene

glutamate receptor, ionotropic, AMPA 1

Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophysiologic processes. These receptors are heteromeric protein complexes with multiple subunits, each possessing transmembrane regions, and all arranged to form a ligand-gated ion channel. The classification of glutamate receptors is based on their activation by different pharmacologic agonists. This gene belongs to a family of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

NPY5R Gene

neuropeptide Y receptor Y5

OPRL1 Gene

opiate receptor-like 1

The protein encoded by this gene is a G protein-coupled receptor whose expression can be induced by phytohemagglutinin. The encoded integral membrane protein is a receptor for the 17 aa neuropeptide nociceptin/orphanin FQ. This gene may be involved in the regulation of numerous brain activities, particularly instinctive and emotional behaviors. A promoter for this gene also functions as a promoter for another gene, regulator of G-protein signalling 19 (RGS19), located on the opposite strand. Three transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jan 2011]

MUSK Gene

muscle, skeletal, receptor tyrosine kinase

This gene encodes a muscle-specific tyrosine kinase receptor. The encoded protein may play a role in clustering of the acetylcholine receptor in the postsynaptic neuromuscular junction. Mutations in this gene have been associated with congenital myasthenic syndrome. Alternatively spliced transcript variants have been described.[provided by RefSeq, Oct 2009]

ESRRA Gene

estrogen-related receptor alpha

The protein encoded by this gene is a nuclear receptor that is closely related to the estrogen receptor. This protein acts as a site-specific transcription regulator and has been also shown to interact with estrogen and the transcripton factor TFIIB by direct protein-protein contact. The binding and regulatory activities of this protein have been demonstrated in the regulation of a variety of genes including lactoferrin, osteopontin, medium-chain acyl coenzyme A dehydrogenase (MCAD) and thyroid hormone receptor genes. A processed pseudogene of ESRRA is located on chromosome 13q12.1. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Sep 2013]

ESRRB Gene

estrogen-related receptor beta

This gene encodes a protein with similarity to the estrogen receptor. Its function is unknown; however, a similar protein in mouse plays an essential role in placental development. [provided by RefSeq, Jul 2008]

LOC100422434 Gene

complement component (3b/4b) receptor 1 (Knops blood group) pseudogene

LOC100421874 Gene

olfactory receptor, family 5, subfamily H, member 2 pseudogene

NSMF Gene

NMDA receptor synaptonuclear signaling and neuronal migration factor

The protein encoded by this gene is involved in guidance of olfactory axon projections and migration of luteinizing hormone-releasing hormone neurons. Defects in this gene are a cause of idiopathic hypogonadotropic hypogonadism (IHH). Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2010]

OR7E26P Gene

olfactory receptor, family 7, subfamily E, member 26 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6Q1 Gene

olfactory receptor, family 6, subfamily Q, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4X7P Gene

olfactory receptor, family 4, subfamily X, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R111P Gene

vomeronasal 1 receptor 111 pseudogene

LOC728333 Gene

nuclear receptor coactivator 4 pseudogene

OR4A21P Gene

olfactory receptor, family 4, subfamily A, member 21 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPN2P1 Gene

protein tyrosine phosphatase, non-receptor type 2 pseudogene 1

VN1R75P Gene

vomeronasal 1 receptor 75 pseudogene

FOLR2 Gene

folate receptor 2 (fetal)

The protein encoded by this gene is a member of the folate receptor (FOLR) family, and these genes exist in a cluster on chromosome 11. Members of this gene family have a high affinity for folic acid and for several reduced folic acid derivatives, and they mediate delivery of 5-methyltetrahydrofolate to the interior of cells. This protein has a 68% and 79% sequence homology with the FOLR1 and FOLR3 proteins, respectively. Although this protein was originally thought to be specific to placenta, it can also exist in other tissues, and it may play a role in the transport of methotrexate in synovial macrophages in rheumatoid arthritis patients. Multiple transcript variants that encode the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

FOLR3 Gene

folate receptor 3 (gamma)

This gene encodes a member of the folate receptor (FOLR) family, members of which have a high affinity for folic acid and for several reduced folic acid derivatives, and mediate delivery of 5-methyltetrahydrofolate to the interior of cells. This gene includes two polymorphic variants; the shorter one has two base deletion in the CDS, resulting in a truncated polypeptide, compared to the longer one. Both protein products are constitutively secreted in hematopoietic tissues and are potential serum marker for certain hematopoietic malignancies. The longer protein has a 71% and 79% sequence homology with the FOLR1 and FOLR2 proteins, respectively. [provided by RefSeq, Jul 2008]

TAS2R67P Gene

taste receptor, type 2, member 67 pseudogene

LILRB5 Gene

leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 5

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Several other LIR subfamily B receptors are expressed on immune cells where they bind to MHC class I molecules on antigen-presenting cells and inhibit stimulation of an immune response. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LILRB4 Gene

leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 4

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. The receptor can also function in antigen capture and presentation. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LILRB3 Gene

leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 3

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LILRB2 Gene

leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

LILRB1 Gene

leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1

This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

OR6C71P Gene

olfactory receptor, family 6, subfamily C, member 71 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC102724610 Gene

putative vomeronasal receptor-like protein 4

OR5BR1P Gene

olfactory receptor, family 5, subfamily BR, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LCORL Gene

ligand dependent nuclear receptor corepressor-like

This gene encodes a transcription factor that appears to function in spermatogenesis. Polymorphisms in this gene are associated with measures of skeletal frame size and adult height. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

KTN1 Gene

kinectin 1 (kinesin receptor)

This gene encodes an integral membrane protein that is a member of the kinectin protein family. The encoded protein is primarily localized to the endoplasmic reticulum membrane. This protein binds kinesin and may be involved in intracellular organelle motility. This protein also binds translation elongation factor-delta and may be involved in the assembly of the elongation factor-1 complex. Alternate splicing results in multiple transcript variants of this gene. [provided by RefSeq, Aug 2012]

NPSR1 Gene

neuropeptide S receptor 1

This gene encodes a member of the vasopressin/oxytocin subfamily of G protein-coupled receptors. The encoded membrane protein acts as a receptor for neuropeptide S and affects a variety of cellular processes through its signaling. Increased expression of this gene in ciliated cells of the respiratory epithelium and in bronchial smooth muscle cells is associated with asthma. Polymorphisms in this gene have also been associated with asthma susceptibility, panic disorders, inflammatory bowel disease, and rheumatoid arthritis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

OR51A3P Gene

olfactory receptor, family 51, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LYVE1 Gene

lymphatic vessel endothelial hyaluronan receptor 1

This gene encodes a type I integral membrane glycoprotein. The encoded protein acts as a receptor and binds to both soluble and immobilized hyaluronan. This protein may function in lymphatic hyaluronan transport and have a role in tumor metastasis. [provided by RefSeq, Jul 2008]

DDR2 Gene

discoidin domain receptor tyrosine kinase 2

Receptor tyrosine kinases (RTKs) play a key role in the communication of cells with their microenvironment. These molecules are involved in the regulation of cell growth, differentiation, and metabolism. In several cases the biochemical mechanism by which RTKs transduce signals across the membrane has been shown to be ligand induced receptor oligomerization and subsequent intracellular phosphorylation. This autophosphorylation leads to phosphorylation of cytosolic targets as well as association with other molecules, which are involved in pleiotropic effects of signal transduction. RTKs have a tripartite structure with extracellular, transmembrane, and cytoplasmic regions. This gene encodes a member of a novel subclass of RTKs and contains a distinct extracellular region encompassing a factor VIII-like domain. Alternative splicing in the 5' UTR results in multiple transcript variants encoding the same protein. [provided by RefSeq, Jul 2008]

DDR1 Gene

discoidin domain receptor tyrosine kinase 1

Receptor tyrosine kinases play a key role in the communication of cells with their microenvironment. These kinases are involved in the regulation of cell growth, differentiation and metabolism. The protein encoded by this gene belongs to a subfamily of tyrosine kinase receptors with homology to Dictyostelium discoideum protein discoidin I in their extracellular domain, and that are activated by various types of collagen. Expression of this protein is restricted to epithelial cells, particularly in the kidney, lung, gastrointestinal tract, and brain. In addition, it has been shown to be significantly overexpressed in several human tumors. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Feb 2011]

LOC105369274 Gene

olfactory receptor 4N4

LOC100421978 Gene

olfactory receptor, family 6, subfamily M, member 1 pseudogene

LOC100421971 Gene

olfactory receptor, family 5, subfamily B, member 3 pseudogene

LOC100421977 Gene

olfactory receptor, family 6, subfamily M, member 1 pseudogene

OR6M1 Gene

olfactory receptor, family 6, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418680 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

NRBF2 Gene

nuclear receptor binding factor 2

OR8K2P Gene

olfactory receptor, family 8, subfamily K, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2J2 Gene

olfactory receptor, family 2, subfamily J, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2J3 Gene

olfactory receptor, family 2, subfamily J, member 3

This gene encodes a G-protein-coupled receptor (GPCR) that functions as an olfactory receptor. Olfactory receptors interact with odorant molecules in the nose to initiate a neuronal response that triggers the perception of a smell. The protein encoded by this gene responds to cis-3-hexen-1-ol, which is released by wounded plants, including cut grass. This gene is situated in a cluster of similar olfactory-receptor coding genes on chromosome 6. [provided by RefSeq, May 2013]

TRBV11-2 Gene

T cell receptor beta variable 11-2

LOC105379662 Gene

killer cell immunoglobulin-like receptor 2DS1

IL17RE Gene

interleukin 17 receptor E

This gene encodes a transmembrane protein that functions as the receptor for interleukin-17C. The encoded protein signals to downstream components of the mitogen activated protein kinase (MAPK) pathway. Activity of this protein is important in the immune response to bacterial pathogens. Alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Sep 2013]

IL17RD Gene

interleukin 17 receptor D

This gene encodes a membrane protein belonging to the interleukin-17 receptor (IL-17R) protein family. The encoded protein is a component of the interleukin-17 receptor signaling complex, and the interaction between this protein and IL-17R does not require the interleukin (PMID: 19079364). The gene product also affects fibroblast growth factor signaling, inhibiting or stimulating growth through MAPK/ERK signaling (PMID: 21663947, 18096367). [provided by RefSeq, Nov 2011]

IL17RC Gene

interleukin 17 receptor C

This gene encodes a single-pass type I membrane protein that shares similarity with the interleukin-17 receptor (IL-17RA). Unlike IL-17RA, which is predominantly expressed in hemopoietic cells, and binds with high affinity to only IL-17A, this protein is expressed in nonhemopoietic tissues, and binds both IL-17A and IL-17F with similar affinities. The proinflammatory cytokines, IL-17A and IL-17F, have been implicated in the progression of inflammatory and autoimmune diseases. Multiple alternatively spliced transcript variants encoding different isoforms have been detected for this gene, and it has been proposed that soluble, secreted proteins lacking transmembrane and intracellular domains may function as extracellular antagonists to cytokine signaling. [provided by RefSeq, Feb 2011]

IL17RA Gene

interleukin 17 receptor A

Interleukin 17A (IL17A) is a proinflammatory cytokine secreted by activated T-lymphocytes. It is a potent inducer of the maturation of CD34-positive hematopoietic precursors into neutrophils. The transmembrane protein encoded by this gene (interleukin 17A receptor; IL17RA) is a ubiquitous type I membrane glycoprotein that binds with low affinity to interleukin 17A. Interleukin 17A and its receptor play a pathogenic role in many inflammatory and autoimmune diseases such as rheumatoid arthritis. Like other cytokine receptors, this receptor likely has a multimeric structure. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Feb 2014]

NCOR2 Gene

nuclear receptor corepressor 2

This gene encodes a nuclear receptor co-repressor that mediates transcriptional silencing of certain target genes. The encoded protein is a member of a family of thyroid hormone- and retinoic acid receptor-associated co-repressors. This protein acts as part of a multisubunit complex which includes histone deacetylases to modify chromatin structure that prevents basal transcriptional activity of target genes. Aberrant expression of this gene is associated with certain cancers. Alternate splicing results in multiple transcript variants encoding different isoforms.[provided by RefSeq, Apr 2011]

NCOR1 Gene

nuclear receptor corepressor 1

This gene encodes a protein that mediates ligand-independent transcription repression of thyroid-hormone and retinoic-acid receptors by promoting chromatin condensation and preventing access of the transcription machinery. It is part of a complex which also includes histone deacetylases and transcriptional regulators similar to the yeast protein Sin3p. This gene is located between the Charcot-Marie-Tooth and Smith-Magenis syndrome critical regions on chromosome 17. Alternate splicing results in multiple transcript variants. Pseudogenes of this gene are found on chromosomes 17 and 20.[provided by RefSeq, Jun 2010]

FFAR4 Gene

free fatty acid receptor 4

This gene encodes a G protein-coupled receptor (GPR) which belongs to the rhodopsin family of GPRs. The encoded protein functions as a receptor for free fatty acids, including omega-3, and participates in suppressing anti-inflammatory responses and insulin sensitizing. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

GPR137C Gene

G protein-coupled receptor 137C

GPR137B Gene

G protein-coupled receptor 137B

OR4V1P Gene

olfactory receptor, family 4, subfamily V, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K5 Gene

olfactory receptor, family 4, subfamily K, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K1 Gene

olfactory receptor, family 4, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K3 Gene

olfactory receptor, family 4, subfamily K, member 3 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K2 Gene

olfactory receptor, family 4, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1X5P Gene

olfactory receptor, family 1, subfamily X, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC728815 Gene

cytokine receptor-like factor 3 pseudogene

OR2AG2 Gene

olfactory receptor, family 2, subfamily AG, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AG1 Gene

olfactory receptor, family 2, subfamily AG, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5B15P Gene

olfactory receptor, family 5, subfamily B, member 15 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1AA1P Gene

olfactory receptor, family 1, subfamily AA, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

QRFPR Gene

pyroglutamylated RFamide peptide receptor

OR5M12P Gene

olfactory receptor, family 5, subfamily M, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R95P Gene

vomeronasal 1 receptor 95 pseudogene

LOC100422056 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

OR7E97P Gene

olfactory receptor, family 7, subfamily E, member 97 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV4-2 Gene

T cell receptor beta variable 4-2

TRBV4-3 Gene

T cell receptor beta variable 4-3

TRBV4-1 Gene

T cell receptor beta variable 4-1

PTAFR Gene

platelet-activating factor receptor

This gene encodes a seven-transmembrane G-protein-coupled receptor for platelet-activating factor (PAF) that localizes to lipid rafts and/or caveolae in the cell membrane. PAF (1-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a phospholipid that plays a significant role in oncogenic transformation, tumor growth, angiogenesis, metastasis, and pro-inflammatory processes. Binding of PAF to the PAF-receptor (PAFR) stimulates numerous signal transduction pathways including phospholipase C, D, A2, mitogen-activated protein kinases (MAPKs), and the phosphatidylinositol-calcium second messenger system. Following PAFR activation, cells become rapidly desensitized and this refractory state is dependent on PAFR phosphorylation, internalization, and down-regulation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2011]

OR7E35P Gene

olfactory receptor, family 7, subfamily E, member 35 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

THRAP3 Gene

thyroid hormone receptor associated protein 3

OR2AL1P Gene

olfactory receptor, family 2, subfamily AL, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OPRD1 Gene

opioid receptor, delta 1

VDR Gene

vitamin D (1,25- dihydroxyvitamin D3) receptor

This gene encodes the nuclear hormone receptor for vitamin D3. This receptor also functions as a receptor for the secondary bile acid lithocholic acid. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows sequence similarity to the steroid and thyroid hormone receptors. Downstream targets of this nuclear hormone receptor are principally involved in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer. Mutations in this gene are associated with type II vitamin D-resistant rickets. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding different proteins. [provided by RefSeq, Feb 2011]

TRAJ61 Gene

T cell receptor alpha joining 61 (non-functional)

TRAJ60 Gene

T cell receptor alpha joining 60 (pseudogene)

OR10A3 Gene

olfactory receptor, family 10, subfamily A, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10A2 Gene

olfactory receptor, family 10, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10A5 Gene

olfactory receptor, family 10, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10A4 Gene

olfactory receptor, family 10, subfamily A, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10A7 Gene

olfactory receptor, family 10, subfamily A, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10A6 Gene

olfactory receptor, family 10, subfamily A, member 6 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52J1P Gene

olfactory receptor, family 52, subfamily J, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4G1P Gene

olfactory receptor, family 4, subfamily G, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL5RA Gene

interleukin 5 receptor, alpha

The protein encoded by this gene is an interleukin 5 specific subunit of a heterodimeric cytokine receptor. The receptor is comprised of a ligand specific alpha subunit and a signal transducing beta subunit shared by the receptors for interleukin 3 (IL3), colony stimulating factor 2 (CSF2/GM-CSF), and interleukin 5 (IL5). The binding of this protein to IL5 depends on the beta subunit. The beta subunit is activated by the ligand binding, and is required for the biological activities of IL5. This protein has been found to interact with syndecan binding protein (syntenin), which is required for IL5 mediated activation of the transcription factor SOX4. Several alternatively spliced transcript variants encoding four distinct isoforms have been reported. [provided by RefSeq, Jul 2011]

TRAV18 Gene

T cell receptor alpha variable 18

TRAV19 Gene

T cell receptor alpha variable 19

TRAV10 Gene

T cell receptor alpha variable 10

TRAV11 Gene

T cell receptor alpha variable 11 (pseudogene)

TRAV16 Gene

T cell receptor alpha variable 16

TRAV17 Gene

T cell receptor alpha variable 17

TRAV15 Gene

T cell receptor alpha variable 15 (pseudogene)

OR6Y1 Gene

olfactory receptor, family 6, subfamily Y, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E156P Gene

olfactory receptor, family 7, subfamily E, member 156 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LEPR Gene

leptin receptor

The protein encoded by this gene belongs to the gp130 family of cytokine receptors that are known to stimulate gene transcription via activation of cytosolic STAT proteins. This protein is a receptor for leptin (an adipocyte-specific hormone that regulates body weight), and is involved in the regulation of fat metabolism, as well as in a novel hematopoietic pathway that is required for normal lymphopoiesis. Mutations in this gene have been associated with obesity and pituitary dysfunction. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. It is noteworthy that this gene and LEPROT gene (GeneID:54741) share the same promoter and the first 2 exons, however, encode distinct proteins (PMID:9207021).[provided by RefSeq, Nov 2010]

LOC105379595 Gene

olfactory receptor 11G2-like

PEAR1 Gene

platelet endothelial aggregation receptor 1

PEAR1 is a platelet receptor that signals upon the formation of platelet-platelet contacts independent of platelet activation and secondary to platelet aggregation (Nanda et al., 2005 [PubMed 15851471]).[supplied by OMIM, Mar 2008]

OR6C65 Gene

olfactory receptor, family 6, subfamily C, member 65

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

EBAG9 Gene

estrogen receptor binding site associated, antigen, 9

This gene was identified as an estrogen-responsive gene. Regulation of transcription by estrogen is mediated by estrogen receptor, which binds to the estrogen-responsive element found in the 5'-flanking region of this gene. The encoded protein is a tumor-associated antigen that is expressed at high frequency in a variety of cancers. Alternate splicing results in multiple transcript variants. A pseudogene of this gene has been defined on chromosome 10. [provided by RefSeq, Jul 2013]

VN1R42P Gene

vomeronasal 1 receptor 42 pseudogene

SCARB2 Gene

scavenger receptor class B, member 2

The protein encoded by this gene is a type III glycoprotein that is located primarily in limiting membranes of lysosomes and endosomes. Earlier studies in mice and rat suggested that this protein may participate in membrane transportation and the reorganization of endosomal/lysosomal compartment. The protein deficiency in mice was reported to impair cell membrane transport processes and cause pelvic junction obstruction, deafness, and peripheral neuropathy. Further studies in human showed that this protein is a ubiquitously expressed protein and that it is involved in the pathogenesis of HFMD (hand, foot, and mouth disease) caused by enterovirus-71 and possibly by coxsackievirus A16. Mutations in this gene caused an autosomal recessive progressive myoclonic epilepsy-4 (EPM4), also known as action myoclonus-renal failure syndrome (AMRF). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Feb 2011]

SCARB1 Gene

scavenger receptor class B, member 1

The protein encoded by this gene is a plasma membrane receptor for high density lipoprotein cholesterol (HDL). The encoded protein mediates cholesterol transfer to and from HDL. In addition, this protein is a receptor for hepatitis C virus glycoprotein E2. Two transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Mar 2011]

OR1H1P Gene

olfactory receptor, family 1, subfamily H, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRPC2 Gene

transient receptor potential cation channel, subfamily C, member 2, pseudogene

TRPC3 Gene

transient receptor potential cation channel, subfamily C, member 3

The protein encoded by this gene is a membrane protein that can form a non-selective channel permeable to calcium and other cations. The encoded protein appears to be induced to form channels by a receptor tyrosine kinase-activated phosphatidylinositol second messenger system and also by depletion of intracellular calcium stores. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

TRPC6 Gene

transient receptor potential cation channel, subfamily C, member 6

The protein encoded by this gene forms a receptor-activated calcium channel in the cell membrane. The channel is activated by diacylglycerol and is thought to be under the control of a phosphatidylinositol second messenger system. Activation of this channel occurs independently of protein kinase C and is not triggered by low levels of intracellular calcium. Defects in this gene are a cause of focal segmental glomerulosclerosis 2 (FSGS2). [provided by RefSeq, Mar 2009]

TRPC4 Gene

transient receptor potential cation channel, subfamily C, member 4

This gene encodes a member of the canonical subfamily of transient receptor potential cation channels. The encoded protein forms a non-selective calcium-permeable cation channel that is activated by Gq-coupled receptors and tyrosine kinases, and plays a role in multiple processes including endothelial permeability, vasodilation, neurotransmitter release and cell proliferation. Single nucleotide polymorphisms in this gene may be associated with generalized epilepsy with photosensitivity. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Aug 2011]

OR2T29 Gene

olfactory receptor, family 2, subfamily T, member 29

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T27 Gene

olfactory receptor, family 2, subfamily T, member 27

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAF6P1 Gene

TNF receptor-associated factor 6 pseudogene 1

OR7E83P Gene

olfactory receptor, family 7, subfamily E, member 83 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV8-1 Gene

T cell receptor alpha variable 8-1

TRAV8-3 Gene

T cell receptor alpha variable 8-3

TRAV8-2 Gene

T cell receptor alpha variable 8-2

TRAV8-5 Gene

T cell receptor alpha variable 8-5 (pseudogene)

TRAV8-4 Gene

T cell receptor alpha variable 8-4

TRAV8-7 Gene

T cell receptor alpha variable 8-7 (non-functional)

TRAV8-6 Gene

T cell receptor alpha variable 8-6

TRBV5-7 Gene

T cell receptor beta variable 5-7 (non-functional)

TRBV5-6 Gene

T cell receptor beta variable 5-6

TRBV5-5 Gene

T cell receptor beta variable 5-5

TRBV5-4 Gene

T cell receptor beta variable 5-4

TRBV5-3 Gene

T cell receptor beta variable 5-3 (non-functional)

TRBV5-2 Gene

T cell receptor beta variable 5-2 (pseudogene)

TRBV5-1 Gene

T cell receptor beta variable 5-1

TRBV5-8 Gene

T cell receptor beta variable 5-8

GPR32P1 Gene

G protein-coupled receptor 32, pseudogene 1

TRAC Gene

T cell receptor alpha constant

TRAP Gene

triiodothyronine receptor auxiliary protein

SSR1P2 Gene

signal sequence receptor, alpha pseudogene 2

LOC100422037 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC105372478 Gene

taste receptor type 1 member 2-like

OR8I2 Gene

olfactory receptor, family 8, subfamily I, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2B2 Gene

olfactory receptor, family 2, subfamily B, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2B3 Gene

olfactory receptor, family 2, subfamily B, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2B6 Gene

olfactory receptor, family 2, subfamily B, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IFNAR2 Gene

interferon (alpha, beta and omega) receptor 2

The protein encoded by this gene is a type I membrane protein that forms one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor stimulates Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2. Multiple transcript variants encoding at least two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

IFNAR1 Gene

interferon (alpha, beta and omega) receptor 1

The protein encoded by this gene is a type I membrane protein that forms one of the two chains of a receptor for interferons alpha and beta. Binding and activation of the receptor stimulates Janus protein kinases, which in turn phosphorylate several proteins, including STAT1 and STAT2. The encoded protein also functions as an antiviral factor. [provided by RefSeq, Jul 2008]

LOC100422041 Gene

olfactory receptor, family 5, subfamily AC, member 2 pseudogene

LOC100422040 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

IRAK2 Gene

interleukin-1 receptor-associated kinase 2

IRAK2 encodes the interleukin-1 receptor-associated kinase 2, one of two putative serine/threonine kinases that become associated with the interleukin-1 receptor (IL1R) upon stimulation. IRAK2 is reported to participate in the IL1-induced upregulation of NF-kappaB. [provided by RefSeq, Jul 2008]

IRAK3 Gene

interleukin-1 receptor-associated kinase 3

This gene encodes a member of the interleukin-1 receptor-associated kinase protein family. Members of this family are essential components of the Toll/IL-R immune signal transduction pathways. This protein is primarily expressed in monocytes and macrophages and functions as a negative regulator of Toll-like receptor signaling. Mutations in this gene are associated with a susceptibility to asthma. Alternate splicing results in multiple transcript variants. [provided by RefSeq, May 2010]

IRAK1 Gene

interleukin-1 receptor-associated kinase 1

This gene encodes the interleukin-1 receptor-associated kinase 1, one of two putative serine/threonine kinases that become associated with the interleukin-1 receptor (IL1R) upon stimulation. This gene is partially responsible for IL1-induced upregulation of the transcription factor NF-kappa B. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

IRAK4 Gene

interleukin-1 receptor-associated kinase 4

This gene encodes a kinase that activates NF-kappaB in both the Toll-like receptor (TLR) and T-cell receptor (TCR) signaling pathways. The protein is essential for most innate immune responses. Mutations in this gene result in IRAK4 deficiency and recurrent invasive pneumococcal disease. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]

ACVR1C Gene

activin A receptor, type IC

ACVR1C is a type I receptor for the TGFB (see MIM 190180) family of signaling molecules. Upon ligand binding, type I receptors phosphorylate cytoplasmic SMAD transcription factors, which then translocate to the nucleus and interact directly with DNA or in complex with other transcription factors (Bondestam et al., 2001 [PubMed 12063393]).[supplied by OMIM, Mar 2008]

ACVR1B Gene

activin A receptor, type IB

This gene encodes an activin A type IB receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I and two type II receptors. This protein is a type I receptor which is essential for signaling. Mutations in this gene are associated with pituitary tumors. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]

GABBR2 Gene

gamma-aminobutyric acid (GABA) B receptor, 2

The multi-pass membrane protein encoded by this gene belongs to the G-protein coupled receptor 3 family and GABA-B receptor subfamily. The GABA-B receptors inhibit neuronal activity through G protein-coupled second-messenger systems, which regulate the release of neurotransmitters, and the activity of ion channels and adenylyl cyclase. This receptor subunit forms an active heterodimeric complex with GABA-B receptor subunit 1, neither of which is effective on its own. Allelic variants of this gene have been associated with nicotine dependence.[provided by RefSeq, Jan 2010]

SSTR1 Gene

somatostatin receptor 1

Somatostatins are peptide hormones that regulate diverse cellular functions such as neurotransmission, cell proliferation, and endocrine signaling as well as inhibiting the release of many hormones and other secretory proteins. Somatostatin has two active forms of 14 and 28 amino acids. The biological effects of somatostatins are mediated by a family of G-protein coupled somatostatin receptors that are expressed in a tissue-specific manner. The protein encoded by this gene is a member of the superfamily of somatostatin receptors having seven transmembrane segments. Somatostatin receptors form homodimers and heterodimers with other members of the superfamily as well as with other G-protein coupled receptors and receptor tyrosine kinases. This somatostatin receptor has greater affinity for somatostatin-14 than -28. [provided by RefSeq, Jul 2012]

OR7E106P Gene

olfactory receptor, family 7, subfamily E, member 106 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TNK2 Gene

tyrosine kinase, non-receptor, 2

This gene encodes a tyrosine kinase that binds Cdc42Hs in its GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activity of Cdc42Hs. This binding is mediated by a unique sequence of 47 amino acids C-terminal to an SH3 domain. The protein may be involved in a regulatory mechanism that sustains the GTP-bound active form of Cdc42Hs and which is directly linked to a tyrosine phosphorylation signal transduction pathway. Several alternatively spliced transcript variants have been identified from this gene, but the full-length nature of only two transcript variants has been determined. [provided by RefSeq, Jul 2008]

TNK1 Gene

tyrosine kinase, non-receptor, 1

The protein encoded by this gene belongs to the tyrosine protein kinase family. Tyrosine protein kinases are important regulators of intracellular signal transduction pathways, mediating cellular proliferation, survival, and development. This gene is highly expressed in fetal tissues and at lower levels in few adult tissues, thus may function in signaling pathways utilized broadly during fetal development, and more selectively in adult tissues. It plays a negative regulatory role in the Ras-Raf1-MAPK pathway, and knockout mice have been shown to develop spontaneous tumors, suggesting a role as a tumor suppressor gene. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

LOC100129099 Gene

proline-rich nuclear receptor coactivator 2 pseudogene

ADGRG4 Gene

adhesion G protein-coupled receptor G4

This gene encodes a G-protein coupled receptor belonging to a large family of diverse integral membrane proteins that participate in various physiological functions. Members of this superfamily are characterized by a signature 7-transmembrane domain motif. The ligand for this family member is unknown, and it is therefore an orphan receptor. This receptor is known to be expressed in normal enterochromaffin cells and in gastrointestinal neuroendocrine carcinoma cells, and it is therefore considered to be a novel biomarker or target for immunotherapy. [provided by RefSeq, May 2010]

KLRD1 Gene

killer cell lectin-like receptor subfamily D, member 1

Natural killer (NK) cells are a distinct lineage of lymphocytes that mediate cytotoxic activity and secrete cytokines upon immune stimulation. Several genes of the C-type lectin superfamily, including members of the NKG2 family, are expressed by NK cells and may be involved in the regulation of NK cell function. KLRD1 (CD94) is an antigen preferentially expressed on NK cells and is classified as a type II membrane protein because it has an external C terminus. Three transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

OR2S2 Gene

olfactory receptor, family 2, subfamily S, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR151 Gene

G protein-coupled receptor 151

GPR156 Gene

G protein-coupled receptor 156

G protein-coupled receptors (GPCRs) are a large superfamily of cell surface receptors characterized by 7 helical transmembrane domains, together with N-terminal extracellular and C-terminal intracellular domains.[supplied by OMIM, Mar 2008]

GPR155 Gene

G protein-coupled receptor 155

GPR158 Gene

G protein-coupled receptor 158

PPFIA2 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 2

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. It has been proposed that liprins are multivalent proteins that form complex structures and act as scaffolds for the recruitment and anchoring of LAR family of tyrosine phosphatases. This protein has been shown to bind the calcium/calmodulin-dependent serine protein kinase (MAGUK family) protein (also known as CASK) and proposed to regulate higher-order brain functions in mammals. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2013]

PPFIA3 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 3

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. Liprin family protein has been shown to localize phosphatase LAR to cell focal adhesions and may be involved in the molecular organization of presynaptic active zones. [provided by RefSeq, Jul 2008]

PPFIA1 Gene

protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 1

The protein encoded by this gene is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family. Liprins interact with members of LAR family of transmembrane protein tyrosine phosphatases, which are known to be important for axon guidance and mammary gland development. This protein binds to the intracellular membrane-distal phosphatase domain of tyrosine phosphatase LAR, and appears to localize LAR to cell focal adhesions. This interaction may regulate the disassembly of focal adhesion and thus help orchestrate cell-matrix interactions. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

OR5K4 Gene

olfactory receptor, family 5, subfamily K, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5K1 Gene

olfactory receptor, family 5, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5K2 Gene

olfactory receptor, family 5, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5K3 Gene

olfactory receptor, family 5, subfamily K, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TIRAP Gene

toll-interleukin 1 receptor (TIR) domain containing adaptor protein

The innate immune system recognizes microbial pathogens through Toll-like receptors (TLRs), which identify pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns and all TLRs have a Toll-interleukin 1 receptor (TIR) domain, which is responsible for signal transduction. The protein encoded by this gene is a TIR adaptor protein involved in the TLR4 signaling pathway of the immune system. It activates NF-kappa-B, MAPK1, MAPK3 and JNK, which then results in cytokine secretion and the inflammatory response. Alternative splicing of this gene results in several transcript variants; however, not all variants have been fully described. [provided by RefSeq, Jul 2008]

GPR166P Gene

G protein-coupled receptor 166 pseudogene

MILR1 Gene

mast cell immunoglobulin-like receptor 1

OR7E66P Gene

olfactory receptor, family 7, subfamily E, member 66 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BS1P Gene

olfactory receptor, family 5, subfamily BS, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C5 Gene

olfactory receptor, family 4, subfamily C, member 5 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C6 Gene

olfactory receptor, family 4, subfamily C, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4C3 Gene

olfactory receptor, family 4, subfamily C, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R68P Gene

taste receptor, type 2, member 68 pseudogene

OR6E1P Gene

olfactory receptor, family 6, subfamily E, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52V1P Gene

olfactory receptor, family 52, subfamily V, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8T1P Gene

olfactory receptor, family 8, subfamily T, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K15 Gene

olfactory receptor, family 4, subfamily K, member 15

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K14 Gene

olfactory receptor, family 4, subfamily K, member 14

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K17 Gene

olfactory receptor, family 4, subfamily K, member 17

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R88P Gene

vomeronasal 1 receptor 88 pseudogene

LOC100422502 Gene

transient receptor potential cation channel, subfamily C, member 6 pseudogene

LOC100422500 Gene

transient receptor potential cation channel, subfamily C, member 6 pseudogene

OR6M3P Gene

olfactory receptor, family 6, subfamily M, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1A2 Gene

olfactory receptor, family 1, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1A1 Gene

olfactory receptor, family 1, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GFRA4 Gene

GDNF family receptor alpha 4

The protein encoded by this gene is a member of the GDNF receptor family. It is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor for persephin, and mediates activation of the RET tyrosine kinase receptor. This gene is a candidate gene for RET-associated diseases. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Jul 2008]

GFRA1 Gene

GDNF family receptor alpha 1

Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent neurotrophic factors that play key roles in the control of neuron survival and differentiation. The protein encoded by this gene is a member of the GDNF receptor family. It is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor for both GDNF and NTN, and mediates activation of the RET tyrosine kinase receptor. This gene is a candidate gene for Hirschsprung disease. Multiple alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Feb 2009]

GFRA3 Gene

GDNF family receptor alpha 3

The protein encoded by this gene is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor and a member of the GDNF receptor family. It forms a signaling receptor complex with RET tyrosine kinase receptor and binds the ligand, artemin. [provided by RefSeq, Jul 2008]

GFRA2 Gene

GDNF family receptor alpha 2

Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are two structurally related, potent neurotrophic factors that play key roles in the control of neuron survival and differentiation. The protein encoded by this gene is a member of the GDNF receptor family. It is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor for both GDNF and NTN, and mediates activation of the RET tyrosine kinase receptor. This encoded protein acts preferentially as a receptor for NTN compared to its other family member, GDNF family receptor alpha 1. This gene is a candidate gene for RET-associated diseases. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2009]

OR52N3P Gene

olfactory receptor, family 52, subfamily N, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PVRL2 Gene

poliovirus receptor-related 2 (herpesvirus entry mediator B)

This gene encodes a single-pass type I membrane glycoprotein with two Ig-like C2-type domains and an Ig-like V-type domain. This protein is one of the plasma membrane components of adherens junctions. It also serves as an entry for certain mutant strains of herpes simplex virus and pseudorabies virus, and it is involved in cell to cell spreading of these viruses. Variations in this gene have been associated with differences in the severity of multiple sclerosis. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]

PVRL4 Gene

poliovirus receptor-related 4

This gene encodes a member of the nectin family. The encoded protein contains two immunoglobulin-like (Ig-like) C2-type domains and one Ig-like V-type domain. It is involved in cell adhesion through trans-homophilic and -heterophilic interactions. It is a single-pass type I membrane protein. The soluble form is produced by proteolytic cleavage at the cell surface by the metalloproteinase ADAM17/TACE. The secreted form is found in both breast tumor cell lines and breast tumor patients. Mutations in this gene are the cause of ectodermal dysplasia-syndactyly syndrome type 1, an autosomal recessive disorder. Alternatively spliced transcript variants have been found but the full-length nature of the variant has not been determined.[provided by RefSeq, Jan 2011]

OR10J7P Gene

olfactory receptor, family 10, subfamily J, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E46P Gene

olfactory receptor, family 7, subfamily E, member 46 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A42 Gene

olfactory receptor, family 2, subfamily A, member 42

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9S24P Gene

olfactory receptor, family 9, subfamily S, member 24 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R102P Gene

vomeronasal 1 receptor 102 pseudogene

OR52Y1P Gene

olfactory receptor, family 52, subfamily Y, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR1H5P Gene

nuclear receptor subfamily 1, group H, member 5, pseudogene

OR13F1 Gene

olfactory receptor, family 13, subfamily F, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CCRL2 Gene

chemokine (C-C motif) receptor-like 2

This gene encodes a chemokine receptor like protein, which is predicted to be a seven transmembrane protein and most closely related to CCR1. Chemokines and their receptors mediated signal transduction are critical for the recruitment of effector immune cells to the site of inflammation. This gene is expressed at high levels in primary neutrophils and primary monocytes, and is further upregulated on neutrophil activation and during monocyte to macrophage differentiation. The function of this gene is unknown. This gene is mapped to the region where the chemokine receptor gene cluster is located. [provided by RefSeq, Jul 2008]

LOC100996284 Gene

Fc receptor-like protein 2

OR11J7P Gene

olfactory receptor, family 11, subfamily J, member 7 pseudogene

LOC100418652 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418650 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

TNFRSF6B Gene

tumor necrosis factor receptor superfamily, member 6b, decoy

This gene belongs to the tumor necrosis factor receptor superfamily. The encoded protein is postulated to play a regulatory role in suppressing FasL- and LIGHT-mediated cell death. It acts as a decoy receptor that competes with death receptors for ligand binding. Over-expression of this gene has been noted in gastrointestinal tract tumors. Read-through transcription into this gene from the neighboring upstream gene, which encodes regulator of telomere elongation helicase 1 (RTEL1), generates a non-coding transcript. [provided by RefSeq, Feb 2011]

HCRTR1 Gene

hypocretin (orexin) receptor 1

The protein encoded by this gene is a G-protein coupled receptor involved in the regulation of feeding behavior. The encoded protein selectively binds the hypothalamic neuropeptide orexin A. A related gene (HCRTR2) encodes a G-protein coupled receptor that binds orexin A and orexin B. [provided by RefSeq, Jan 2009]

LOC100421946 Gene

olfactory receptor, family 6, subfamily C, member 1 pseudogene

OR10V1 Gene

olfactory receptor, family 10, subfamily V, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PPARGC1A Gene

peroxisome proliferator-activated receptor gamma, coactivator 1 alpha

The protein encoded by this gene is a transcriptional coactivator that regulates the genes involved in energy metabolism. This protein interacts with PPARgamma, which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element binding protein (CREB) and nuclear respiratory factors (NRFs). It provides a direct link between external physiological stimuli and the regulation of mitochondrial biogenesis, and is a major factor that regulates muscle fiber type determination. This protein may be also involved in controlling blood pressure, regulating cellular cholesterol homoeostasis, and the development of obesity. [provided by RefSeq, Jul 2008]

PPARGC1B Gene

peroxisome proliferator-activated receptor gamma, coactivator 1 beta

The protein encoded by this gene stimulates the activity of several transcription factors and nuclear receptors, including estrogen receptor alpha, nuclear respiratory factor 1, and glucocorticoid receptor. The encoded protein may be involved in fat oxidation, non-oxidative glucose metabolism, and the regulation of energy expenditure. This protein is downregulated in prediabetic and type 2 diabetes mellitus patients. Certain allelic variations in this gene increase the risk of the development of obesity. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2010]

BMPR1APS1 Gene

bone morphogenetic protein receptor, type IA pseudogene 1

BMPR1APS2 Gene

bone morphogenetic protein receptor, type IA pseudogene 2

LOC341378 Gene

thyroid hormone receptor interactor 11 pseudogene

HAVCR2 Gene

hepatitis A virus cellular receptor 2

The protein encoded by this gene belongs to the immunoglobulin superfamily, and TIM family of proteins. CD4-positive T helper lymphocytes can be divided into types 1 (Th1) and 2 (Th2) on the basis of their cytokine secretion patterns. Th1 cells are involved in cell-mediated immunity to intracellular pathogens and delayed-type hypersensitivity reactions, whereas, Th2 cells are involved in the control of extracellular helminthic infections and the promotion of atopic and allergic diseases. This protein is a Th1-specific cell surface protein that regulates macrophage activation, and inhibits Th1-mediated auto- and alloimmune responses, and promotes immunological tolerance. [provided by RefSeq, Sep 2011]

OR51A7 Gene

olfactory receptor, family 51, subfamily A, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR5A Gene

5-hydroxytryptamine (serotonin) receptor 5A, G protein-coupled

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has been implicated in a wide range of psychiatric conditions and also has vasoconstrictive and vasodilatory effects. The gene described in this record is a member of 5-hydroxytryptamine (serotonin) receptor family and encodes a multi-pass membrane protein that functions as a receptor for 5-hydroxytryptamine and couples to G-proteins. This protein has been shown to function in part through the regulation of intracellular Ca2+ mobilization. [provided by RefSeq, Jul 2008]

OR7E16P Gene

olfactory receptor, family 7, subfamily E, member 16 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL22RA2 Gene

interleukin 22 receptor, alpha 2

This gene encodes a member of the class II cytokine receptor family. The encoded soluble protein specifically binds to and inhibits interleukin 22 activity by blocking the interaction of interleukin 22 with its cell surface receptor. The encoded protein may be important in the regulation of inflammatory response, and has been implicated in the regulation of tumorigenesis in the colon. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2013]

IL22RA1 Gene

interleukin 22 receptor, alpha 1

The protein encoded by this gene belongs to the class II cytokine receptor family, and has been shown to be a receptor for interleukin 22 (IL22). IL22 receptor is a protein complex that consists of this protein and interleukin 10 receptor, beta (IL10BR/CRFB4), a subunit also shared by the receptor complex for interleukin 10 (IL10). This gene and interleukin 28 receptor, alpha (IL28RA) form a cytokine receptor gene cluster in the chromosomal region 1p36. [provided by RefSeq, Jul 2008]

SPSB4 Gene

splA/ryanodine receptor domain and SOCS box containing 4

LOC730069 Gene

nuclear receptor binding factor 2 pseudogene

CD200R1L Gene

CD200 receptor 1-like

OR4N3P Gene

olfactory receptor, family 4, subfamily N, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FGFR3P6 Gene

fibroblast growth factor receptor 3 pseudogene 6

FGFR3P4 Gene

fibroblast growth factor receptor 3 pseudogene 4

FGFR3P3 Gene

fibroblast growth factor receptor 3 pseudogene 3

FGFR3P2 Gene

fibroblast growth factor receptor 3 pseudogene 2

FGFR3P1 Gene

fibroblast growth factor receptor 3 pseudogene 1

MC4R Gene

melanocortin 4 receptor

The protein encoded by this gene is a membrane-bound receptor and member of the melanocortin receptor family. The encoded protein interacts with adrenocorticotropic and MSH hormones and is mediated by G proteins. This is an intronless gene. Defects in this gene are a cause of autosomal dominant obesity. [provided by RefSeq, Jan 2010]

PPARG Gene

peroxisome proliferator-activated receptor gamma

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described. [provided by RefSeq, Jul 2008]

PPARD Gene

peroxisome proliferator-activated receptor delta

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) family. PPARs are nuclear hormone receptors that bind peroxisome proliferators and control the size and number of peroxisomes produced by cells. PPARs mediate a variety of biological processes, and may be involved in the development of several chronic diseases, including diabetes, obesity, atherosclerosis, and cancer. This protein is a potent inhibitor of ligand-induced transcription activity of PPAR alpha and PPAR gamma. It may function as an integrator of transcription repression and nuclear receptor signaling. The expression of this gene is found to be elevated in colorectal cancer cells. The elevated expression can be repressed by adenomatosis polyposis coli (APC), a tumor suppressor protein related to APC/beta-catenin signaling pathway. Knockout studies in mice suggested the role of this protein in myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2010]

OR52A5 Gene

olfactory receptor, family 52, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PPARA Gene

peroxisome proliferator-activated receptor alpha

Peroxisome proliferators include hypolipidemic drugs, herbicides, leukotriene antagonists, and plasticizers; this term arises because they induce an increase in the size and number of peroxisomes. Peroxisomes are subcellular organelles found in plants and animals that contain enzymes for respiration and for cholesterol and lipid metabolism. The action of peroxisome proliferators is thought to be mediated via specific receptors, called PPARs, which belong to the steroid hormone receptor superfamily. PPARs affect the expression of target genes involved in cell proliferation, cell differentiation and in immune and inflammation responses. Three closely related subtypes (alpha, beta/delta, and gamma) have been identified. This gene encodes the subtype PPAR-alpha, which is a nuclear transcription factor. Multiple alternatively spliced transcript variants have been described for this gene, although the full-length nature of only two has been determined. [provided by RefSeq, Jul 2008]

OR10V2P Gene

olfactory receptor, family 10, subfamily V, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F1P Gene

olfactory receptor, family 4, subfamily F, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F15 Gene

olfactory receptor, family 4, subfamily F, member 15

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F16 Gene

olfactory receptor, family 4, subfamily F, member 16

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F17 Gene

olfactory receptor, family 4, subfamily F, member 17

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBD2 Gene

T cell receptor beta diversity 2

OR8A1 Gene

olfactory receptor, family 8, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422159 Gene

olfactory receptor, family 52, subfamily N, member 2 pseudogene

LOC100422158 Gene

olfactory receptor, family 52, subfamily B, member 4 pseudogene

LOC100422157 Gene

olfactory receptor, family 52, subfamily J, member 3 pseudogene

LOC100422150 Gene

olfactory receptor, family 52, subfamily K, member 1 pseudogene

LOC100422152 Gene

olfactory receptor, family 51, subfamily L, member 1 pseudogene

OR2Z1 Gene

olfactory receptor, family 2, subfamily Z, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KLRK1 Gene

killer cell lectin-like receptor subfamily K, member 1

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. NK cells preferentially express several calcium-dependent (C-type) lectins, which have been implicated in the regulation of NK cell function. The NKG2 gene family is located within the NK complex, a region that contains several C-type lectin genes preferentially expressed in NK cells. This gene encodes a member of the NKG2 family. The encoded transmembrane protein is characterized by a type II membrane orientation (has an extracellular C terminus) and the presence of a C-type lectin domain. It binds to a diverse family of ligands that include MHC class I chain-related A and B proteins and UL-16 binding proteins, where ligand-receptor interactions can result in the activation of NK and T cells. The surface expression of these ligands is important for the recognition of stressed cells by the immune system, and thus this protein and its ligands are therapeutic targets for the treatment of immune diseases and cancers. Read-through transcription exists between this gene and the upstream KLRC4 (killer cell lectin-like receptor subfamily C, member 4) family member in the same cluster. [provided by RefSeq, Dec 2010]

FCGR1C Gene

Fc fragment of IgG, high affinity Ic, receptor (CD64), pseudogene

The gene represents one of three related immunoglobulin gamma Fc receptor genes located on chromosome 1. This family member lacks the transmembrane and coiled-coiled domains found in other family members and is thought to be a pseudogene of Fc-gamma-receptor 1A. [provided by RefSeq, Apr 2009]

FCGR1B Gene

Fc fragment of IgG, high affinity Ib, receptor (CD64)

Three distinct, but closely related classes of receptors that bind the Fc portion of IgG have been identified (Fcgamma RI, II and III). The FcgammaRI family consists of three closely related genes termed A, B, and C. This gene encodes the low affinity FcgammaRIB receptor that may play an important role in humoral immune response. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Oct 2011]

FCGR1A Gene

Fc fragment of IgG, high affinity Ia, receptor (CD64)

This gene encodes a protein that plays an important role in the immune response. This protein is a high-affinity Fc-gamma receptor. The gene is one of three related gene family members located on chromosome 1. [provided by RefSeq, Jul 2008]

OR51G2 Gene

olfactory receptor, family 51, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51G1 Gene

olfactory receptor, family 51, subfamily G, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R30P Gene

vomeronasal 1 receptor 30 pseudogene

OR3B1P Gene

olfactory receptor, family 3, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTGER4P3 Gene

prostaglandin E receptor 4 (subtype EP4) pseudogene 3

PTGER4P1 Gene

prostaglandin E receptor 4 (subtype EP4) pseudogene 1

OR2W4P Gene

olfactory receptor, family 2, subfamily W, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV8-2 Gene

T cell receptor beta variable 8-2 (pseudogene)

TRBV8-1 Gene

T cell receptor beta variable 8-1 (pseudogene)

OR7A10 Gene

olfactory receptor, family 7, subfamily A, member 10

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5C1 Gene

olfactory receptor, family 5, subfamily C, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418507 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418504 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

TRBV26OR9-2 Gene

T cell receptor beta variable 26/OR9-2 (pseudogene)

ADGRE5 Gene

adhesion G protein-coupled receptor E5

This gene encodes a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors, which mediate cell-cell interactions. These proteins are cleaved by self-catalytic proteolysis into a large extracellular subunit and seven-span transmembrane subunit, which associate at the cell surface as a receptor complex. The encoded protein may play a role in cell adhesion as well as leukocyte recruitment, activation and migration, and contains multiple extracellular EGF-like repeats which mediate binding to chondroitin sulfate and the cell surface complement regulatory protein CD55. Expression of this gene may play a role in the progression of several types of cancer. Alternatively spliced transcript variants encoding multiple isoforms with 3 to 5 EGF-like repeats have been observed for this gene. This gene is found in a cluster with other EGF-TM7 genes on the short arm of chromosome 19. [provided by RefSeq, Jun 2011]

ADGRE1 Gene

adhesion G protein-coupled receptor E1

This gene encodes a protein that has a domain resembling seven transmembrane G protein-coupled hormone receptors (7TM receptors) at its C-terminus. The N-terminus of the encoded protein has six EGF-like modules, separated from the transmembrane segments by a serine/threonine-rich domain, a feature reminiscent of mucin-like, single-span, integral membrane glycoproteins with adhesive properties. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

ADGRE3 Gene

adhesion G protein-coupled receptor E3

This gene encodes a member of the class B seven-span transmembrane (TM7) receptor family expressed predominantly by cells of the immune system. Family members are characterized by an extended extracellular region with a variable number of N-terminal epidermal growth factor (EGF)-like domains coupled to a TM7 domain via a mucin-like spacer domain. This gene is closely linked to the gene encoding egf-like molecule containing mucin-like hormone receptor 2 on chromosome 19. This protein may play a role in myeloid-myeloid interactions during immune and inflammatory responses. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jan 2014]

ADGRE2 Gene

adhesion G protein-coupled receptor E2

This gene encodes a member of the class B seven-span transmembrane (TM7) subfamily of G-protein coupled receptors. These proteins are characterized by an extended extracellular region with a variable number of N-terminal epidermal growth factor-like domains coupled to a TM7 domain via a mucin-like spacer domain. The encoded protein is expressed mainly in myeloid cells where it promotes cell-cell adhesion through interaction with chondroitin sulfate chains. This gene is situated in a cluster of related genes on chromosome 19. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Aug 2012]

OR5B1P Gene

olfactory receptor, family 5, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5B12 Gene

olfactory receptor, family 5, subfamily B, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8B5P Gene

olfactory receptor, family 8, subfamily B, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11Q1P Gene

olfactory receptor, family 11, subfamily Q, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RXFP1 Gene

relaxin/insulin-like family peptide receptor 1

This gene encodes a member of the leucine-rich repeat-containing subgroup of the G protein-coupled 7-transmembrane receptor superfamily. The encoded protein plays a critical role in sperm motility, pregnancy and parturition as a receptor for the protein hormone relaxin. Decreased expression of this gene may play a role in endometriosis. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Dec 2011]

RXFP3 Gene

relaxin/insulin-like family peptide receptor 3

RXFP2 Gene

relaxin/insulin-like family peptide receptor 2

This gene encodes a member of the GPCR (G protein-coupled, 7-transmembrane receptor) family. Mutations in this gene are associated with cryptorchidism. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.[provided by RefSeq, Oct 2009]

RXFP4 Gene

relaxin/insulin-like family peptide receptor 4

GPR100 is a member of the rhodopsin family of G protein-coupled receptors (GPRs) (Fredriksson et al., 2003 [PubMed 14623098]).[supplied by OMIM, Mar 2008]

LOC100422001 Gene

olfactory receptor, family 5, subfamily J, member 2 pseudogene

ROBO1 Gene

roundabout, axon guidance receptor, homolog 1 (Drosophila)

Bilateral symmetric nervous systems have special midline structures that establish a partition between the two mirror image halves. Some axons project toward and across the midline in response to long-range chemoattractants emanating from the midline. The product of this gene is a member of the immunoglobulin gene superfamily and encodes an integral membrane protein that functions in axon guidance and neuronal precursor cell migration. This receptor is activated by SLIT-family proteins, resulting in a repulsive effect on glioma cell guidance in the developing brain. A related gene is located at an adjacent region on chromosome 3. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Mar 2009]

ROBO3 Gene

roundabout, axon guidance receptor, homolog 3 (Drosophila)

This gene is a member of the Roundabout (ROBO) gene family that controls neurite outgrowth, growth cone guidance, and axon fasciculation. ROBO proteins are a subfamily of the immunoglobulin transmembrane receptor superfamily. SLIT proteins 1-3, a family of secreted chemorepellants, are ligands for ROBO proteins and SLIT/ROBO interactions regulate myogenesis, leukocyte migration, kidney morphogenesis, angiogenesis, and vasculogenesis in addition to neurogenesis. This gene, ROBO3, has a putative extracellular domain with five immunoglobulin (Ig)-like loops and three fibronectin (Fn) type III motifs, a transmembrane segment, and a cytoplasmic tail with three conserved signaling motifs: CC0, CC2, and CC3 (CC for conserved cytoplasmic). Unlike other ROBO family members, ROBO3 lacks motif CC1. The ROBO3 gene regulates axonal navigation at the ventral midline of the neural tube. In mouse, loss of Robo3 results in a complete failure of commissural axons to cross the midline throughout the spinal cord and the hindbrain. Mutations ROBO3 result in horizontal gaze palsy with progressive scoliosis (HGPPS); an autosomal recessive disorder characterized by congenital absence of horizontal gaze, progressive scoliosis, and failure of the corticospinal and somatosensory axon tracts to cross the midline in the medulla. Alternative transcript variants have been described but have not been experimentally validated. [provided by RefSeq, Dec 2009]

ROBO4 Gene

roundabout, axon guidance receptor, homolog 4 (Drosophila)

TRA Gene

T cell receptor alpha locus

TRB Gene

T cell receptor beta locus

T cell receptors recognize foreign antigens which have been processed as small peptides and bound to major histocompatibility complex (MHC) molecules at the surface of antigen presenting cells (APC). Each T cell receptor is a dimer consisting of one alpha and one beta chain or one delta and one gamma chain. In a single cell, the T cell receptor loci are rearranged and expressed in the order delta, gamma, beta, and alpha. If both delta and gamma rearrangements produce functional chains, the cell expresses delta and gamma. If not, the cell proceeds to rearrange the beta and alpha loci. This region represents the germline organization of the T cell receptor beta locus. The beta locus includes V (variable), J (joining), diversity (D), and C (constant) segments. During T cell development, the beta chain is synthesized by a recombination event at the DNA level joining a D segment with a J segment; a V segment is then joined to the D-J gene. The C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random additional of nucleotides by terminal deoxynucleotidyltransferase. Several V segments and one J segment of the beta locus are known to be incapable of encoding a protein and are considered pseudogenes. The beta locus also includes eight trypsinogen genes, three of which encode functional proteins and five of which are pseudogenes. Chromosomal abnormalities involving the T-cell receptor beta locus have been associated with T-cell lymphomas. [provided by RefSeq, Jul 2008]

TRD Gene

T cell receptor delta locus

TRG Gene

T cell receptor gamma locus

T cell receptors recognize foreign antigens which have been processed as small peptides and bound to major histocompatibility complex (MHC) molecules at the surface of antigen presenting cells (APC). Each T cell receptor is a dimer consisting of one alpha and one beta chain or one delta and one gamma chain. In a single cell, the T cell receptor loci are rearranged and expressed in the order delta, gamma, beta, and alpha. If both delta and gamma rearrangements produce functional chains, the cell expresses delta and gamma. If not, the cell proceeds to rearrange the beta and alpha loci. This region represents the germline organization of the T cell receptor gamma locus. The gamma locus includes V (variable), J (joining), and C (constant) segments. During T cell development, the gamma chain is synthesized by a recombination event at the DNA level joining a V segment with a J segment; the C segment is later joined by splicing at the RNA level. Recombination of many different V segments with several J segments provides a wide range of antigen recognition. Additional diversity is attained by junctional diversity, resulting from the random addition of nucleotides by terminal deoxynucleotidyltransferase. Several V segments of the gamma locus are known to be incapable of encoding a protein and are considered pseudogenes. Somatic rearrangement of the gamma locus has been observed in T cells derived from patients with T cell leukemia and ataxia telangiectasia. [provided by RefSeq, Jul 2008]

BZRAP1 Gene

benzodiazepine receptor (peripheral) associated protein 1

TRIP4 Gene

thyroid hormone receptor interactor 4

OR5M7P Gene

olfactory receptor, family 5, subfamily M, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52H1 Gene

olfactory receptor, family 52, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR52 Gene

G protein-coupled receptor 52

Members of the G protein-coupled receptor (GPR) family play important roles in signal transduction from the external environment to the inside of the cell.[supplied by OMIM, Jul 2002]

GPR55 Gene

G protein-coupled receptor 55

This gene belongs to the G-protein-coupled receptor superfamily. The encoded integral membrane protein is a likely cannabinoid receptor. It may be involved in several physiological and pathological processes by activating a variety of signal transduction pathways. [provided by RefSeq, Aug 2013]

TAS2R18P Gene

taste receptor, type 2, member 18, pseudogene

GPR162 Gene

G protein-coupled receptor 162

This gene was identified upon genomic analysis of a gene-dense region at human chromosome 12p13. It appears to be mainly expressed in the brain; however, its function is not known. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

LOC100421632 Gene

thyroid hormone receptor associated protein 3 pseudogene

OR1I1 Gene

olfactory receptor, family 1, subfamily I, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E149P Gene

olfactory receptor, family 7, subfamily E, member 149 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

DBIP2 Gene

diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein) pseudogene 2

DBIP3 Gene

diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein) pseudogene 3

DBIP1 Gene

diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein) pseudogene 1

TSHRL1 Gene

thyroid stimulating hormone receptor-like 1

NPR1 Gene

natriuretic peptide receptor 1

Guanylyl cyclases, catalyzing the production of cGMP from GTP, are classified as soluble and membrane forms (Garbers and Lowe, 1994 [PubMed 7982997]). The membrane guanylyl cyclases, often termed guanylyl cyclases A through F, form a family of cell-surface receptors with a similar topographic structure: an extracellular ligand-binding domain, a single membrane-spanning domain, and an intracellular region that contains a protein kinase-like domain and a cyclase catalytic domain. GC-A and GC-B function as receptors for natriuretic peptides; they are also referred to as atrial natriuretic peptide receptor A (NPR1) and type B (NPR2; MIM 108961). Also see NPR3 (MIM 108962), which encodes a protein with only the ligand-binding transmembrane and 37-amino acid cytoplasmic domains. NPR1 is a membrane-bound guanylate cyclase that serves as the receptor for both atrial and brain natriuretic peptides (ANP (MIM 108780) and BNP (MIM 600295), respectively).[supplied by OMIM, May 2009]

EGFR Gene

epidermal growth factor receptor

The protein encoded by this gene is a transmembrane glycoprotein that is a member of the protein kinase superfamily. This protein is a receptor for members of the epidermal growth factor family. EGFR is a cell surface protein that binds to epidermal growth factor. Binding of the protein to a ligand induces receptor dimerization and tyrosine autophosphorylation and leads to cell proliferation. Mutations in this gene are associated with lung cancer. Multiple alternatively spliced transcript variants that encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2010]

OR2H5P Gene

olfactory receptor, family 2, subfamily H, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CHRNG Gene

cholinergic receptor, nicotinic, gamma (muscle)

The mammalian muscle-type acetylcholine receptor is a transmembrane pentameric glycoprotein with two alpha subunits, one beta, one delta, and one epsilon (in adult skeletal muscle) or gamma (in fetal and denervated muscle) subunit. This gene, which encodes the gamma subunit, is expressed prior to the thirty-third week of gestation in humans. The gamma subunit of the acetylcholine receptor plays a role in neuromuscular organogenesis and ligand binding and disruption of gamma subunit expression prevents the correct localization of the receptor in cell membranes. Mutations in this gene cause Escobar syndrome and a lethal form of multiple pterygium syndrome. Muscle-type acetylcholine receptor is the major antigen in the autoimmune disease myasthenia gravis.[provided by RefSeq, Sep 2009]

CHRND Gene

cholinergic receptor, nicotinic, delta (muscle)

The acetylcholine receptor of muscle has 5 subunits of 4 different types: 2 alpha and 1 each of beta, gamma and delta subunits. After acetylcholine binding, the receptor undergoes an extensive conformation change that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Defects in this gene are a cause of multiple pterygium syndrome lethal type (MUPSL), congenital myasthenic syndrome slow-channel type (SCCMS), and congenital myasthenic syndrome fast-channel type (FCCMS). Several transcript variants, some protein-coding and some not, have been found for this gene. [provided by RefSeq, Feb 2012]

CHRNE Gene

cholinergic receptor, nicotinic, epsilon (muscle)

Acetylcholine receptors at mature mammalian neuromuscular junctions are pentameric protein complexes composed of four subunits in the ratio of two alpha subunits to one beta, one epsilon, and one delta subunit. The acetylcholine receptor changes subunit composition shortly after birth when the epsilon subunit replaces the gamma subunit seen in embryonic receptors. Mutations in the epsilon subunit are associated with congenital myasthenic syndrome. [provided by RefSeq, Sep 2009]

PROKR1 Gene

prokineticin receptor 1

PROKR2 Gene

prokineticin receptor 2

Prokineticins are secreted proteins that can promote angiogenesis and induce strong gastrointestinal smooth muscle contraction. The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins. The encoded protein is similar in sequence to GPR73, another G protein-coupled receptor for prokineticins. [provided by RefSeq, Jul 2008]

OR14L1P Gene

olfactory receptor, family 14, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ESRRG Gene

estrogen-related receptor gamma

This gene encodes a member of the estrogen receptor-related receptor (ESRR) family, which belongs to the nuclear hormone receptor superfamily. All members of the ESRR family share an almost identical DNA binding domain, which is composed of two C4-type zinc finger motifs. The ESRR members are orphan nuclear receptors; they bind to the estrogen response element and steroidogenic factor 1 response element, and activate genes controlled by both response elements in the absence of any ligands. The ESRR family is closely related to the estrogen receptor (ER) family. They share target genes, co-regulators and promoters, and by targeting the same set of genes, the ESRRs seem to interfere with the ER-mediated estrogen response in various ways. It has been reported that the family member encoded by this gene functions as a transcriptional activator of DNA cytosine-5-methyltransferases 1 (Dnmt1) expression by direct binding to its response elements in the DNMT1 promoters, modulates cell proliferation and estrogen signaling in breast cancer, and negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation and bone formation. Multiple alternatively spliced transcript variants have been identified, which mainly differ at the 5' end and some of which encode protein isoforms differing in the N-terminal region. [provided by RefSeq, Aug 2011]

OR2J4P Gene

olfactory receptor, family 2, subfamily J, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TREM1 Gene

triggering receptor expressed on myeloid cells 1

This gene encodes a receptor belonging to the Ig superfamily that is expressed on myeloid cells. This protein amplifies neutrophil and monocyte-mediated inflammatory responses triggered by bacterial and fungal infections by stimulating release of pro-inflammatory chemokines and cytokines, as well as increased surface expression of cell activation markers. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene.[provided by RefSeq, Jun 2011]

TREM2 Gene

triggering receptor expressed on myeloid cells 2

This gene encodes a membrane protein that forms a receptor signaling complex with the TYRO protein tyrosine kinase binding protein. The encoded protein functions in immune response and may be involved in chronic inflammation by triggering the production of constitutive inflammatory cytokines. Defects in this gene are a cause of polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Nov 2012]

NR1H4 Gene

nuclear receptor subfamily 1, group H, member 4

This gene encodes a ligand-activated transcription factor, which shares structural features in common with nuclear hormone receptor family, such as a DNA-binding domain that targets the receptor to specific DNA sequences, and a ligand-binding domain, which interacts directly with the ligand and contains a ligand-dependent transcriptional activation domain. This protein functions as a receptor for bile acids, and when bound to bile acids, regulates the expression of genes involved in bile acid synthesis and transport. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. [provided by RefSeq, Aug 2011]

NR1H2 Gene

nuclear receptor subfamily 1, group H, member 2

The liver X receptors, LXRA (NR1H3; MIM 602423) and LXRB, form a subfamily of the nuclear receptor superfamily and are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. The inducible LXRA is highly expressed in liver, adrenal gland, intestine, adipose tissue, macrophages, lung, and kidney, whereas LXRB is ubiquitously expressed. Ligand-activated LXRs form obligate heterodimers with retinoid X receptors (RXRs; see MIM 180245) and regulate expression of target genes containing LXR response elements (summary by Korf et al., 2009 [PubMed 19436111]).[supplied by OMIM, Jan 2010]

OR2A13P Gene

olfactory receptor, family 2, subfamily A, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6D1P Gene

olfactory receptor, family 6, subfamily D, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC103047893 Gene

vomeronasal 1 receptor 49 pseudogene

HTR6 Gene

5-hydroxytryptamine (serotonin) receptor 6, G protein-coupled

This gene encodes a protein that belongs to the seven-transmembrane G protein-coupled receptor family of proteins. The encoded protein couples with the Gs alpha subunit and stimulates adenylate cyclase to activate the cyclic AMP-dependent signaling pathway. This receptor is thought to regulate cholinergic neuronal transmission in the brain. Several antidepressants and antipsychotic drugs have a high affinity for this receptor. [provided by RefSeq, Aug 2013]

HTR7 Gene

5-hydroxytryptamine (serotonin) receptor 7, adenylate cyclase-coupled

The neurotransmitter, serotonin, is thought to play a role in various cognitive and behavioral functions. The serotonin receptor encoded by this gene belongs to the superfamily of G protein-coupled receptors and the gene is a candidate locus for involvement in autistic disorder and other neuropsychiatric disorders. Three splice variants have been identified which encode proteins that differ in the length of their carboxy terminal ends. [provided by RefSeq, Jul 2008]

KDELR2 Gene

KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2

Retention of resident soluble proteins in the lumen of the endoplasmic reticulum (ER) is achieved in both yeast and animal cells by their continual retrieval from the cis-Golgi, or a pre-Golgi compartment. Sorting of these proteins is dependent on a C-terminal tetrapeptide signal, usually lys-asp-glu-leu (KDEL) in animal cells, and his-asp-glu-leu (HDEL) in S. cerevisiae. This process is mediated by a receptor that recognizes, and binds the tetrapeptide-containing protein, and returns it to the ER. In yeast, the sorting receptor encoded by a single gene, ERD2, is a seven-transmembrane protein. Unlike yeast, several human homologs of the ERD2 gene, constituting the KDEL receptor gene family, have been described. KDELR2 was the second member of the family to be identified, and it encodes a protein which is 83% identical to the KDELR1 gene product. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Jul 2008]

KDELR3 Gene

KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3

This gene encodes a member of the KDEL endoplasmic reticulum protein retention receptor family. Retention of resident soluble proteins in the lumen of the endoplasmic reticulum (ER) is achieved in both yeast and animal cells by their continual retrieval from the cis-Golgi, or a pre-Golgi compartment. Sorting of these proteins is dependent on a C-terminal tetrapeptide signal, usually lys-asp-glu-leu (KDEL) in animal cells, and his-asp-glu-leu (HDEL) in S. cerevisiae. This process is mediated by a receptor that recognizes, and binds the tetrapeptide-containing protein, and returns it to the ER. In yeast, the sorting receptor encoded by a single gene, ERD2, is a seven-transmembrane protein. Unlike yeast, several human homologs of the ERD2 gene, constituting the KDEL receptor gene family, have been described. KDELR3 was the third member of the family to be identified. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

KDELR1 Gene

KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 1

Retention of resident soluble proteins in the lumen of the endoplasmic reticulum (ER) is achieved in both yeast and animal cells by their continual retrieval from the cis-Golgi, or a pre-Golgi compartment. Sorting of these proteins is dependent on a C-terminal tetrapeptide signal, usually lys-asp-glu-leu (KDEL) in animal cells, and his-asp-glu-leu (HDEL) in S. cerevisiae. This process is mediated by a receptor that recognizes, and binds the tetrapeptide-containing protein, and returns it to the ER. In yeast, the sorting receptor encoded by a single gene, ERD2, which is a seven-transmembrane protein. Unlike yeast, several human homologs of the ERD2 gene, constituting the KDEL receptor gene family, have been described. The protein encoded by this gene was the first member of the family to be identified, and it encodes a protein structurally and functionally similar to the yeast ERD2 gene product. [provided by RefSeq, Jul 2008]

OR10AF1P Gene

olfactory receptor, family 10, subfamily AF, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H5P Gene

olfactory receptor, family 5, subfamily H, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AGTRAP Gene

angiotensin II receptor-associated protein

This gene encodes a transmembrane protein localized to the plasma membrane and perinuclear vesicular structures. The gene product interacts with the angiotensin II type I receptor and negatively regulates angiotensin II signaling. Alternative splicing of this gene generates multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

OR11H2 Gene

olfactory receptor, family 11, subfamily H, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H1 Gene

olfactory receptor, family 11, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H7 Gene

olfactory receptor, family 11, subfamily H, member 7 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H6 Gene

olfactory receptor, family 11, subfamily H, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H4 Gene

olfactory receptor, family 11, subfamily H, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TNFRSF13B Gene

tumor necrosis factor receptor superfamily, member 13B

The protein encoded by this gene is a lymphocyte-specific member of the tumor necrosis factor (TNF) receptor superfamily. It interacts with calcium-modulator and cyclophilin ligand (CAML). The protein induces activation of the transcription factors NFAT, AP1, and NF-kappa-B and plays a crucial role in humoral immunity by interacting with a TNF ligand. This gene is located within the Smith-Magenis syndrome region on chromosome 17. [provided by RefSeq, Jul 2008]

TNFRSF13C Gene

tumor necrosis factor receptor superfamily, member 13C

B cell-activating factor (BAFF) enhances B-cell survival in vitro and is a regulator of the peripheral B-cell population. Overexpression of Baff in mice results in mature B-cell hyperplasia and symptoms of systemic lupus erythematosus (SLE). Also, some SLE patients have increased levels of BAFF in serum. Therefore, it has been proposed that abnormally high levels of BAFF may contribute to the pathogenesis of autoimmune diseases by enhancing the survival of autoreactive B cells. The protein encoded by this gene is a receptor for BAFF and is a type III transmembrane protein containing a single extracellular cysteine-rich domain. It is thought that this receptor is the principal receptor required for BAFF-mediated mature B-cell survival. [provided by RefSeq, Jul 2008]

LOC100421848 Gene

olfactory receptor, family 2, subfamily S, member 2 pseudogene

LOC100421849 Gene

olfactory receptor, family 2, subfamily S, member 2 pseudogene

LOC100421845 Gene

olfactory receptor, family 1, subfamily S, member 2 pseudogene

NR3C2 Gene

nuclear receptor subfamily 3, group C, member 2

This gene encodes the mineralocorticoid receptor, which mediates aldosterone actions on salt and water balance within restricted target cells. The protein functions as a ligand-dependent transcription factor that binds to mineralocorticoid response elements in order to transactivate target genes. Mutations in this gene cause autosomal dominant pseudohypoaldosteronism type I, a disorder characterized by urinary salt wasting. Defects in this gene are also associated with early onset hypertension with severe exacerbation in pregnancy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2009]

OR6C76 Gene

olfactory receptor, family 6, subfamily C, member 76

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100287856 Gene

cornichon family AMPA receptor auxiliary protein 4 pseudogene

OR6C70 Gene

olfactory receptor, family 6, subfamily C, member 70

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R72P Gene

vomeronasal 1 receptor 72 pseudogene

OR7E25P Gene

olfactory receptor, family 7, subfamily E, member 25 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E126P Gene

olfactory receptor, family 7, subfamily E, member 126 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R49P Gene

vomeronasal 1 receptor 49 pseudogene

IL11RA Gene

interleukin 11 receptor, alpha

Interleukin 11 is a stromal cell-derived cytokine that belongs to a family of pleiotropic and redundant cytokines that use the gp130 transducing subunit in their high affinity receptors. This gene encodes the IL-11 receptor, which is a member of the hematopoietic cytokine receptor family. This particular receptor is very similar to ciliary neurotrophic factor, since both contain an extracellular region with a 2-domain structure composed of an immunoglobulin-like domain and a cytokine receptor-like domain. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jun 2012]

ALK Gene

anaplastic lymphoma receptor tyrosine kinase

This gene encodes a receptor tyrosine kinase, which belongs to the insulin receptor superfamily. This protein comprises an extracellular domain, an hydrophobic stretch corresponding to a single pass transmembrane region, and an intracellular kinase domain. It plays an important role in the development of the brain and exerts its effects on specific neurons in the nervous system. This gene has been found to be rearranged, mutated, or amplified in a series of tumours including anaplastic large cell lymphomas, neuroblastoma, and non-small cell lung cancer. The chromosomal rearrangements are the most common genetic alterations in this gene, which result in creation of multiple fusion genes in tumourigenesis, including ALK (chromosome 2)/EML4 (chromosome 2), ALK/RANBP2 (chromosome 2), ALK/ATIC (chromosome 2), ALK/TFG (chromosome 3), ALK/NPM1 (chromosome 5), ALK/SQSTM1 (chromosome 5), ALK/KIF5B (chromosome 10), ALK/CLTC (chromosome 17), ALK/TPM4 (chromosome 19), and ALK/MSN (chromosome X).[provided by RefSeq, Jan 2011]

LILRA6 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 6

LILRA4 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 4

This gene encodes an immunoglobulin-like cell surface protein that is expressed predominantly on plasmacytoid dendritic cells (PDCs) and modulates the function of these cells in the immune response. Expression of this gene is downregulated by interleukin 3 (IL3). This gene is one of a cluster of highly related genes located at chromosomal region 19q13.4. [provided by RefSeq, Jan 2015]

LILRA5 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 5

The protein encoded by this gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family. LIR family members are known to have activating and inibitory functions in leukocytes. Crosslink of this receptor protein on the surface of monocytes has been shown to induce calcium flux and secretion of several proinflammatory cytokines, which suggests the roles of this protein in triggering innate immune responses. This gene is one of the leukocyte receptor genes that form a gene cluster on the chromosomal region 19q13.4. Four alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

LILRA2 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2

This gene encodes a member of a family of immunoreceptors that are expressed predominantly on monocytes and B cells, and at lower levels on dendritic cells and natural killer cells. The encoded protein is an activating receptor that inhibits dendritic cell differentiation and antigen presentation and suppresses innate immune response. Alternatively spliced transcript variants encoding different isoforms have been found. This gene is located in a cluster of related genes on chromosome 19 and there is a pseudogene for this gene on chromosome 3. [provided by RefSeq, Mar 2014]

LILRA3 Gene

leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 3

This gene encodes a member of a family of immunoreceptors that are expressed predominantly in monocytes and B cells, and at lower levels in dendritic cells and natural killer cells. The encoded protein lacks the transmembrane region found in other members of this family. It acts as a soluble receptor for class I major histocompatibility complex (MHC) antigens. Alternatively spliced transcript variants encoding different isoforms have been found. This gene is located in a cluster of related genes on chromosome 19 and is polymorphic in human populations, with many individuals containing a deletion of this genomic region. [provided by RefSeq, Mar 2014]

LILRA1 Gene

leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 1

This gene encodes an activating member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein is predominantly expressed in B cells, interacts with major histocompatibility complex class I ligands, and contributes to the regulation of immune responses. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, May 2013]

OR13Z3P Gene

olfactory receptor, family 13, subfamily Z, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TGFBR3 Gene

transforming growth factor, beta receptor III

This locus encodes the transforming growth factor (TGF)-beta type III receptor. The encoded receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor superfamily members. Ectodomain shedding produces soluble TGFBR3, which may inhibit TGFB signaling. Decreased expression of this receptor has been observed in various cancers. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene.[provided by RefSeq, Sep 2010]

TRDJ4 Gene

T cell receptor delta joining 4

TRDJ1 Gene

T cell receptor delta joining 1

TRDJ3 Gene

T cell receptor delta joining 3

TRDJ2 Gene

T cell receptor delta joining 2

OR52Z1 Gene

olfactory receptor, family 52, subfamily Z, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5G5P Gene

olfactory receptor, family 5, subfamily G, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KLRC1 Gene

killer cell lectin-like receptor subfamily C, member 1

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. The protein encoded by this gene belongs to the killer cell lectin-like receptor family, also called NKG2 family, which is a group of transmembrane proteins preferentially expressed in NK cells. This family of proteins is characterized by the type II membrane orientation and the presence of a C-type lectin domain. This protein forms a complex with another family member, KLRD1/CD94, and has been implicated in the recognition of the MHC class I HLA-E molecules in NK cells. The genes of NKG2 family members form a killer cell lectin-like receptor gene cluster on chromosome 12. Multiple alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jan 2015]

KLRC3 Gene

killer cell lectin-like receptor subfamily C, member 3

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. NK cells preferentially express several calcium-dependent (C-type) lectins, which have been implicated in the regulation of NK cell function. KLRC3 is a member of the NKG2 group which are expressed primarily in natural killer (NK) cells and encodes a family of transmembrane proteins characterized by a type II membrane orientation (extracellular C terminus) and the presence of a C-type lectin domain. The NKG2 gene family is located within the NK complex, a region that contains several C-type lectin genes preferentially expressed on NK cells. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]

KLRC2 Gene

killer cell lectin-like receptor subfamily C, member 2

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. NK cells preferentially express several calcium-dependent (C-type) lectins, which have been implicated in the regulation of NK cell function. The group, designated KLRC (NKG2) are expressed primarily in natural killer (NK) cells and encodes a family of transmembrane proteins characterized by a type II membrane orientation (extracellular C terminus) and the presence of a C-type lectin domain. The KLRC (NKG2) gene family is located within the NK complex, a region that contains several C-type lectin genes preferentially expressed on NK cells. KLRC2 alternative splice variants have been described but their full-length nature has not been determined. [provided by RefSeq, Jul 2008]

KLRC4 Gene

killer cell lectin-like receptor subfamily C, member 4

Natural killer (NK) cells are lymphocytes that can mediate lysis of certain tumor cells and virus-infected cells without previous activation. They can also regulate specific humoral and cell-mediated immunity. NK cells preferentially express several calcium-dependent (C-type) lectins, which have been implicated in the regulation of NK cell function. This gene is a member of the NKG2 group of genes that are expressed primarily in natural killer (NK) cells. These family members encode transmembrane proteins that are characterized by a type II membrane orientation (have an extracellular C-terminus) and the presence of a C-type lectin domain. This family member is located within the NK complex, a region that contains several C-type lectin genes preferentially expressed in NK cells. Read-through transcription exists between this gene and the downstream KLRK1 (killer cell lectin-like receptor subfamily K, member 1) family member. [provided by RefSeq, Dec 2010]

OR2AH1P Gene

olfactory receptor, family 2, subfamily AH, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

P2RY10P2 Gene

purinergic receptor P2Y, G-protein coupled, 10 pseudogene 2

P2RY10P1 Gene

purinergic receptor P2Y, G-protein coupled, 10 pseudogene 1

AGTR2 Gene

angiotensin II receptor, type 2

The protein encoded by this gene belongs to the G-protein coupled receptor 1 family, and functions as a receptor for angiotensin II. It is an intergral membrane protein that is highly expressed in fetus, but scantily in adult tissues, except brain, adrenal medulla, and atretic ovary. This receptor has been shown to mediate programmed cell death and this apoptotic function may play an important role in developmental biology and pathophysiology. Mutations in this gene are been associated with X-linked mental retardation. [provided by RefSeq, Jan 2010]

AGTR1 Gene

angiotensin II receptor, type 1

Angiotensin II is a potent vasopressor hormone and a primary regulator of aldosterone secretion. It is an important effector controlling blood pressure and volume in the cardiovascular system. It acts through at least two types of receptors. This gene encodes the type 1 receptor which is thought to mediate the major cardiovascular effects of angiotensin II. This gene may play a role in the generation of reperfusion arrhythmias following restoration of blood flow to ischemic or infarcted myocardium. It was previously thought that a related gene, denoted as AGTR1B, existed; however, it is now believed that there is only one type 1 receptor gene in humans. Multiple alternatively spliced transcript variants have been reported for this gene. [provided by RefSeq, Jul 2012]

OR4A46P Gene

olfactory receptor, family 4, subfamily A, member 46 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MAS1L Gene

MAS1 proto-oncogene like, G protein-coupled receptor

ADCYAP1R1 Gene

adenylate cyclase activating polypeptide 1 (pituitary) receptor type I

This gene encodes type I adenylate cyclase activating polypeptide receptor, which is a membrane-associated protein and shares significant homology with members of the glucagon/secretin receptor family. This receptor mediates diverse biological actions of adenylate cyclase activating polypeptide 1 and is positively coupled to adenylate cyclase. Multiple alternatively spliced transcript variants encoding distinct isoforms have been identified. [provided by RefSeq, Dec 2010]

NR1H3 Gene

nuclear receptor subfamily 1, group H, member 3

The protein encoded by this gene belongs to the NR1 subfamily of the nuclear receptor superfamily. The NR1 family members are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. This protein is highly expressed in visceral organs, including liver, kidney and intestine. It forms a heterodimer with retinoid X receptor (RXR), and regulates expression of target genes containing retinoid response elements. Studies in mice lacking this gene suggest that it may play an important role in the regulation of cholesterol homeostasis. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

RYR1 Gene

ryanodine receptor 1 (skeletal)

This gene encodes a ryanodine receptor found in skeletal muscle. The encoded protein functions as a calcium release channel in the sarcoplasmic reticulum but also serves to connect the sarcoplasmic reticulum and transverse tubule. Mutations in this gene are associated with malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia. Alternatively spliced transcripts encoding different isoforms have been described. [provided by RefSeq, Jul 2008]

RYR3 Gene

ryanodine receptor 3

The protein encoded by this gene is a ryanodine receptor, which functions to release calcium from intracellular storage for use in many cellular processes. For example, the encoded protein is involved in skeletal muscle contraction by releasing calcium from the sarcoplasmic reticulum followed by depolarization of T-tubules. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

OR10B1P Gene

olfactory receptor, family 10, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CH17-360D5.1 Gene

neuropeptide Y receptor type 4-like

TRAP1 Gene

TNF receptor-associated protein 1

This gene encodes a mitochondrial chaperone protein that is member of the heat shock protein 90 (HSP90) family. The encoded protein has ATPase activity and interacts with tumor necrosis factor type I. This protein may function in regulating cellular stress responses. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Jan 2013]

OR7E59P Gene

olfactory receptor, family 7, subfamily E, member 59 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CCKAR Gene

cholecystokinin A receptor

This gene encodes a G-protein coupled receptor that binds non-sulfated members of the cholecystokinin (CCK) family of peptide hormones. This receptor is a major physiologic mediator of pancreatic enzyme secretion and smooth muscle contraction of the gallbladder and stomach. In the central and peripheral nervous system this receptor regulates satiety and the release of beta-endorphin and dopamine. [provided by RefSeq, Jul 2008]

VN2R12P Gene

vomeronasal 2 receptor 12 pseudogene

FOLR1 Gene

folate receptor 1 (adult)

The protein encoded by this gene is a member of the folate receptor family. Members of this gene family bind folic acid and its reduced derivatives, and transport 5-methyltetrahydrofolate into cells. This gene product is a secreted protein that either anchors to membranes via a glycosyl-phosphatidylinositol linkage or exists in a soluble form. Mutations in this gene have been associated with neurodegeneration due to cerebral folate transport deficiency. Due to the presence of two promoters, multiple transcription start sites, and alternative splicing, multiple transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Oct 2009]

OR5AM1P Gene

olfactory receptor, family 5, subfamily AM, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AIP Gene

aryl hydrocarbon receptor interacting protein

The protein encoded by this gene is a receptor for aryl hydrocarbons and a ligand-activated transcription factor. The encoded protein is found in the cytoplasm as part of a multiprotein complex, but upon binding of ligand is transported to the nucleus. This protein can regulate the expression of many xenobiotic metabolizing enzymes. Also, the encoded protein can bind specifically to and inhibit the activity of hepatitis B virus. Three transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2014]

HRH4 Gene

histamine receptor H4

Histamine is a ubiquitous messenger molecule released from mast cells, enterochromaffin-like cells, and neurons. Its various actions are mediated by a family of histamine receptors, which are a subset of the G-protein coupled receptor superfamily. This gene encodes a histamine receptor that is predominantly expressed in haematopoietic cells. The protein is thought to play a role in inflammation and allergy reponses. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2009]

HRH2 Gene

histamine receptor H2

Histamine is a ubiquitous messenger molecule released from mast cells, enterochromaffin-like cells, and neurons. Its various actions are mediated by histamine receptors H1, H2, H3 and H4. Histamine receptor H2 belongs to the family 1 of G protein-coupled receptors. It is an integral membrane protein and stimulates gastric acid secretion. It also regulates gastrointestinal motility and intestinal secretion and is thought to be involved in regulating cell growth and differentiation. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]

HRH3 Gene

histamine receptor H3

Histamine is a ubiquitous messenger molecule released from mast cells, enterochromaffin-like cells, and neurons. Its various actions are mediated by histamine receptors H1, H2, H3 and H4. This gene encodes one of the histamine receptors (H3) which belongs to the family 1 of G protein-coupled receptors. It is an integral membrane protein and can regulate neurotransmitter release. This receptor can also increase voltage-dependent calcium current in smooth muscles and innervates the blood vessels and the heart in cardiovascular system. [provided by RefSeq, Jul 2008]

HRH1 Gene

histamine receptor H1

Histamine is a ubiquitous messenger molecule released from mast cells, enterochromaffin-like cells, and neurons. Its various actions are mediated by histamine receptors H1, H2, H3 and H4. The protein encoded by this gene is an integral membrane protein and belongs to the G protein-coupled receptor superfamily. It mediates the contraction of smooth muscles, the increase in capillary permeability due to contraction of terminal venules, the release of catecholamine from adrenal medulla, and neurotransmission in the central nervous system. It has been associated with multiple processes, including memory and learning, circadian rhythm, and thermoregulation. It is also known to contribute to the pathophysiology of allergic diseases such as atopic dermatitis, asthma, anaphylaxis and allergic rhinitis. Multiple alternatively spliced variants, encoding the same protein, have been identified. [provided by RefSeq, Jan 2015]

OR13I1P Gene

olfactory receptor, family 13, subfamily I, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4H6P Gene

olfactory receptor, family 4, subfamily H, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5P3 Gene

olfactory receptor, family 5, subfamily P, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5P2 Gene

olfactory receptor, family 5, subfamily P, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR75 Gene

G protein-coupled receptor 75

GPR75 is a member of the G protein-coupled receptor family. GPRs are cell surface receptors that activate guanine-nucleotide binding proteins upon the binding of a ligand.[supplied by OMIM, Jul 2002]

OR1P1 Gene

olfactory receptor, family 1, subfamily P, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LHCGR Gene

luteinizing hormone/choriogonadotropin receptor

This gene encodes the receptor for both luteinizing hormone and choriogonadotropin. This receptor belongs to the G-protein coupled receptor 1 family, and its activity is mediated by G proteins which activate adenylate cyclase. Mutations in this gene result in disorders of male secondary sexual character development, including familial male precocious puberty, also known as testotoxicosis, hypogonadotropic hypogonadism, Leydig cell adenoma with precocious puberty, and male pseudohermaphtoditism with Leydig cell hypoplasia. [provided by RefSeq, Jul 2008]

OR1Q1 Gene

olfactory receptor, family 1, subfamily Q, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R22P Gene

vomeronasal 1 receptor 22 pseudogene

VN1R9P Gene

vomeronasal 1 receptor 9 pseudogene

OR10AH1P Gene

olfactory receptor, family 10, subfamily AH, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBJ1-6 Gene

T cell receptor beta joining 1-6

TRBJ1-5 Gene

T cell receptor beta joining 1-5

TRBJ1-4 Gene

T cell receptor beta joining 1-4

TRBJ1-3 Gene

T cell receptor beta joining 1-3

TRBJ1-2 Gene

T cell receptor beta joining 1-2

TRBJ1-1 Gene

T cell receptor beta joining 1-1

LOC105376731 Gene

taste receptor cell protein 1-like

SRC Gene

SRC proto-oncogene, non-receptor tyrosine kinase

This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the regulation of embryonic development and cell growth. The protein encoded by this gene is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the malignant progression of colon cancer. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

LOC100419772 Gene

CGRP receptor component pseudogene

OR2AT2P Gene

olfactory receptor, family 2, subfamily AT, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR13D2P Gene

olfactory receptor, family 13, subfamily D, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PLAUR Gene

plasminogen activator, urokinase receptor

This gene encodes the receptor for urokinase plasminogen activator and, given its role in localizing and promoting plasmin formation, likely influences many normal and pathological processes related to cell-surface plasminogen activation and localized degradation of the extracellular matrix. It binds both the proprotein and mature forms of urokinase plasminogen activator and permits the activation of the receptor-bound pro-enzyme by plasmin. The protein lacks transmembrane or cytoplasmic domains and may be anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) moiety following cleavage of the nascent polypeptide near its carboxy-terminus. However, a soluble protein is also produced in some cell types. Alternative splicing results in multiple transcript variants encoding different isoforms. The proprotein experiences several post-translational cleavage reactions that have not yet been fully defined. [provided by RefSeq, Jul 2008]

LOC100422009 Gene

olfactory receptor, family 4, subfamily D, member 9 pseudogene

LOC100422007 Gene

olfactory receptor, family 9, subfamily G, member 9 pseudogene

LOC100422006 Gene

olfactory receptor, family 8, subfamily H, member 3 pseudogene

LOC100422005 Gene

olfactory receptor, family 8, subfamily H, member 3 pseudogene

LOC100422004 Gene

olfactory receptor, family 5, subfamily R, member 1 pseudogene

LOC100422003 Gene

olfactory receptor, family 8, subfamily K, member 5 pseudogene

LOC100422002 Gene

olfactory receptor, family 5, subfamily J, member 2 pseudogene

LOC100422000 Gene

olfactory receptor, family 5, subfamily J, member 2 pseudogene

PIGR Gene

polymeric immunoglobulin receptor

This gene is a member of the immunoglobulin superfamily. The encoded poly-Ig receptor binds polymeric immunoglobulin molecules at the basolateral surface of epithelial cells; the complex is then transported across the cell to be secreted at the apical surface. A significant association was found between immunoglobulin A nephropathy and several SNPs in this gene.[provided by RefSeq, Sep 2009]

RYKP1 Gene

receptor-like tyrosine kinase pseudogene 1

VN1R96P Gene

vomeronasal 1 receptor 96 pseudogene

NTRK1 Gene

neurotrophic tyrosine kinase, receptor, type 1

This gene encodes a member of the neurotrophic tyrosine kinase receptor (NTKR) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. The presence of this kinase leads to cell differentiation and may play a role in specifying sensory neuron subtypes. Mutations in this gene have been associated with congenital insensitivity to pain, anhidrosis, self-mutilating behavior, mental retardation and cancer. Alternate transcriptional splice variants of this gene have been found, but only three have been characterized to date. [provided by RefSeq, Jul 2008]

NTRK2 Gene

neurotrophic tyrosine kinase, receptor, type 2

This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation. Mutations in this gene have been associated with obesity and mood disorders. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]

NTRK3 Gene

neurotrophic tyrosine kinase, receptor, type 3

This gene encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family. This kinase is a membrane-bound receptor that, upon neurotrophin binding, phosphorylates itself and members of the MAPK pathway. Signalling through this kinase leads to cell differentiation and may play a role in the development of proprioceptive neurons that sense body position. Mutations in this gene have been associated with medulloblastomas, secretory breast carcinomas and other cancers. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2011]

GPR3 Gene

G protein-coupled receptor 3

This gene is a member of the G protein-coupled receptor family and is found in the cell membrane. G protein-coupled receptors, characterized by a seven transmembrane domain motif, are involved in translating outside signals into G protein mediated intracellular effects. The encoded protein activates adenylate cyclase and modulates amyloid-beta production in a mouse model, suggesting that it may play a role in Alzheimer's disease. [provided by RefSeq, Oct 2012]

GPR1 Gene

G protein-coupled receptor 1

GPR6 Gene

G protein-coupled receptor 6

GPR4 Gene

G protein-coupled receptor 4

OR7E94P Gene

olfactory receptor, family 7, subfamily E, member 94 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CSF2RBP1 Gene

colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) pseudogene 1

OR7E36P Gene

olfactory receptor, family 7, subfamily E, member 36 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11P1P Gene

olfactory receptor, family 11, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9A1P Gene

olfactory receptor, family 9, subfamily A, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AL1 Gene

olfactory receptor, family 5, subfamily AL, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV23-1 Gene

T cell receptor beta variable 23-1 (non-functional)

PRLHR Gene

prolactin releasing hormone receptor

PRLHR is a 7-transmembrane domain receptor for prolactin-releasing hormone (PRLH; MIM 602663) that is highly expressed in anterior pituitary (Ozawa et al., 2002 [PubMed 11923475]).[supplied by OMIM, Mar 2008]

LOC100420955 Gene

scavenger receptor class B, member 1 pseudogene

TRAJ59 Gene

T cell receptor alpha joining 59 (non-functional)

TRAJ52 Gene

T cell receptor alpha joining 52

TRAJ53 Gene

T cell receptor alpha joining 53

TRAJ50 Gene

T cell receptor alpha joining 50

TRAJ51 Gene

T cell receptor alpha joining 51 (pseudogene)

TRAJ55 Gene

T cell receptor alpha joining 55 (pseudogene)

PTPRVP Gene

protein tyrosine phosphatase, receptor type, V, pseudogene

GOSR1 Gene

golgi SNAP receptor complex member 1

This gene encodes a trafficking membrane protein which transports proteins among the endoplasmic reticulum and the Golgi and between Golgi compartments. This protein is considered an essential component of the Golgi SNAP receptor (SNARE) complex. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

TAS2R9 Gene

taste receptor, type 2, member 9

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R7 Gene

taste receptor, type 2, member 7

This gene product belongs to the family of candidate taste receptors that are members of the G-protein-coupled receptor superfamily. These proteins are specifically expressed in the taste receptor cells of the tongue and palate epithelia. They are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. In functional expression studies, they respond to bitter tastants. This gene maps to the taste receptor gene cluster on chromosome 12p13. [provided by RefSeq, Jul 2008]

TAS2R4 Gene

taste receptor, type 2, member 4

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. These apparently intronless genes encode a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R5 Gene

taste receptor, type 2, member 5

This gene encodes a bitter taste receptor; bitter taste receptors are members of the G protein-coupled receptor superfamily and are specifically expressed by taste receptor cells of the tongue and palate epithelia. Each of these apparently intronless taste receptor genes encodes a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes on chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

TAS2R3 Gene

taste receptor, type 2, member 3

This gene encodes a member of a family of candidate taste receptors that are members of the G protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells of the tongue and palate epithelia. These apparently intronless taste receptor genes encode a 7-transmembrane receptor protein, functioning as a bitter taste receptor. This gene is clustered with another 3 candidate taste receptor genes in chromosome 7 and is genetically linked to loci that influence bitter perception. [provided by RefSeq, Jul 2008]

OR52U1P Gene

olfactory receptor, family 52, subfamily U, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

P2RY8 Gene

purinergic receptor P2Y, G-protein coupled, 8

The protein encoded by this gene belongs to the family of G-protein coupled receptors, that are preferentially activated by adenosine and uridine nucleotides. This gene is moderately expressed in undifferentiated HL60 cells, and is located on both chromosomes X and Y. [provided by RefSeq, Jul 2008]

P2RY2 Gene

purinergic receptor P2Y, G-protein coupled, 2

The product of this gene belongs to the family of P2 receptors, which is activated by extracellular nucleotides and subdivided into P2X ligand-gated ion channels and P2Y G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor, found on many cell types, is activated by ATP and UTP and is reported to be overexpressed on some cancer cell types. It is involved in many cellular functions, such as proliferation, apoptosis and inflammation. Three transcript variants encoding the same protein have been identified for this gene. [provided by RefSeq, Mar 2013]

P2RY1 Gene

purinergic receptor P2Y, G-protein coupled, 1

The product of this gene belongs to the family of G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor functions as a receptor for extracellular ATP and ADP. In platelets binding to ADP leads to mobilization of intracellular calcium ions via activation of phospholipase C, a change in platelet shape, and probably to platelet aggregation. [provided by RefSeq, Jul 2008]

P2RY6 Gene

pyrimidinergic receptor P2Y, G-protein coupled, 6

The product of this gene belongs to the family of P2 receptors, which is activated by extracellular nucleotides and subdivided into P2X ligand-gated ion channels and P2Y G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor, which is a G-protein coupled receptor, is responsive to UDP, partially responsive to UTP and ADP, and not responsive to ATP. It is proposed that this receptor mediates inflammatory responses. Alternative splicing results in multiple transcript variants that encode different protein isoforms. [provided by RefSeq, Mar 2013]

P2RY4 Gene

pyrimidinergic receptor P2Y, G-protein coupled, 4

The product of this gene belongs to the family of G-protein coupled receptors. This family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. This receptor is responsive to uridine nucleotides, partially responsive to ATP, and not responsive to ADP. [provided by RefSeq, Jul 2008]

OR4G6P Gene

olfactory receptor, family 4, subfamily G, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RARRES2P8 Gene

retinoic acid receptor responder (tazarotene induced) 2 pseudogene 8

RARRES2P2 Gene

retinoic acid receptor responder (tazarotene induced) 2 pseudogene 2

OR7E159P Gene

olfactory receptor, family 7, subfamily E, member 159 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RARRES2P1 Gene

retinoic acid receptor responder (tazarotene induced) 2 pseudogene 1

RARRES2P4 Gene

retinoic acid receptor responder (tazarotene induced) 2 pseudogene 4

ADGRE4P Gene

adhesion G protein-coupled receptor E4, pseudogene

This gene is a member of the EGF-TM7 receptor gene family which is thought to play a role in leukocyte adhesion and migration. In other vertebrates, including nonhuman primates, this gene encodes a protein containing N-terminal EGF domains and a C-terminal transmembrane domain. Sequence evidence for the human gene, however, indicates nucleotide deletion in the genomic sequence would result in frameshift and early termination of translation. A protein expressed by this gene would be soluble rather than expressed on the cell surface. As the encoded protein has not been detected, this gene may represent a transcribed pseudogene. [provided by RefSeq, Aug 2008]

TRAV41 Gene

T cell receptor alpha variable 41

TRAV40 Gene

T cell receptor alpha variable 40

OR6T1 Gene

olfactory receptor, family 6, subfamily T, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R41P Gene

vomeronasal 1 receptor 41 pseudogene

OR5BL1P Gene

olfactory receptor, family 5, subfamily BL, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R58P Gene

vomeronasal 1 receptor 58 pseudogene

SCARA3 Gene

scavenger receptor class A, member 3

This gene encodes a macrophage scavenger receptor-like protein. This protein has been shown to deplete reactive oxygen species, and thus play an important role in protecting cells from oxidative stress. The expression of this gene is induced by oxidative stress. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

SCARA5 Gene

scavenger receptor class A, member 5

FFAR2 Gene

free fatty acid receptor 2

This gene encodes a member of the GP40 family of G protein-coupled receptors that are clustered together on chromosome 19. The encoded protein is a receptor for short chain free fatty acids and may be involved in the inflammatory response and in regulating lipid plasma levels. [provided by RefSeq, Apr 2009]

FFAR3 Gene

free fatty acid receptor 3

ERBB2 Gene

erb-b2 receptor tyrosine kinase 2

This gene encodes a member of the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases. This protein has no ligand binding domain of its own and therefore cannot bind growth factors. However, it does bind tightly to other ligand-bound EGF receptor family members to form a heterodimer, stabilizing ligand binding and enhancing kinase-mediated activation of downstream signalling pathways, such as those involving mitogen-activated protein kinase and phosphatidylinositol-3 kinase. Allelic variations at amino acid positions 654 and 655 of isoform a (positions 624 and 625 of isoform b) have been reported, with the most common allele, Ile654/Ile655, shown here. Amplification and/or overexpression of this gene has been reported in numerous cancers, including breast and ovarian tumors. Alternative splicing results in several additional transcript variants, some encoding different isoforms and others that have not been fully characterized. [provided by RefSeq, Jul 2008]

ERBB3 Gene

erb-b2 receptor tyrosine kinase 3

This gene encodes a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. This membrane-bound protein has a neuregulin binding domain but not an active kinase domain. It therefore can bind this ligand but not convey the signal into the cell through protein phosphorylation. However, it does form heterodimers with other EGF receptor family members which do have kinase activity. Heterodimerization leads to the activation of pathways which lead to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein have been reported in numerous cancers, including prostate, bladder, and breast tumors. Alternate transcriptional splice variants encoding different isoforms have been characterized. One isoform lacks the intermembrane region and is secreted outside the cell. This form acts to modulate the activity of the membrane-bound form. Additional splice variants have also been reported, but they have not been thoroughly characterized. [provided by RefSeq, Jul 2008]

ERBB4 Gene

erb-b2 receptor tyrosine kinase 4

This gene is a member of the Tyr protein kinase family and the epidermal growth factor receptor subfamily. It encodes a single-pass type I membrane protein with multiple cysteine rich domains, a transmembrane domain, a tyrosine kinase domain, a phosphotidylinositol-3 kinase binding site and a PDZ domain binding motif. The protein binds to and is activated by neuregulins and other factors and induces a variety of cellular responses including mitogenesis and differentiation. Multiple proteolytic events allow for the release of a cytoplasmic fragment and an extracellular fragment. Mutations in this gene have been associated with cancer. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized. [provided by RefSeq, Jul 2008]

FPR1 Gene

formyl peptide receptor 1

This gene encodes a G protein-coupled receptor of mammalian phagocytic cells that is a member of the G-protein coupled receptor 1 family. The protein mediates the response of phagocytic cells to invasion of the host by microorganisms and is important in host defense and inflammation.[provided by RefSeq, Jul 2010]

FPR2 Gene

formyl peptide receptor 2

FPR3 Gene

formyl peptide receptor 3

SSC4D Gene

scavenger receptor cysteine rich family, 4 domains

The scavenger receptor cysteine-rich (SRCR) superfamily is an ancient and highly conserved group of cell surface and/or secreted proteins, some of which are involved in the development of the immune system and the regulation of both innate and adaptive immune responses. Group B SRCR domains usually contain 8 regularly spaced cysteines that give rise to a well-defined intradomain disulfide-bond pattern.[supplied by OMIM, Apr 2004]

BCAP29 Gene

B-cell receptor-associated protein 29

TAS2R36 Gene

taste receptor, type 2, member 36

TAS2R37 Gene

taste receptor, type 2, member 37

TAS2R33 Gene

taste receptor, type 2, member 33

TAS2R30 Gene

taste receptor, type 2, member 30

TAS2R31 Gene

taste receptor, type 2, member 31

TAS2R44 belongs to the large TAS2R receptor family. TAS2Rs are expressed on the surface of taste receptor cells and mediate the perception of bitterness through a G protein-coupled second messenger pathway (Conte et al., 2002 [PubMed 12584440]). For further information on TAS2Rs, see MIM 604791.[supplied by OMIM, Mar 2009]

TAS2R38 Gene

taste receptor, type 2, member 38

This gene encodes a seven-transmembrane G protein-coupled receptor that controls the ability to taste glucosinolates, a family of bitter-tasting compounds found in plants of the Brassica sp. Synthetic compounds phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) have been identified as ligands for this receptor and have been used to test the genetic diversity of this gene. Although several allelic forms of this gene have been identified worldwide, there are two predominant common forms (taster and non-taster) found outside of Africa. These alleles differ at three nucleotide positions resulting in amino acid changes in the protein (A49P, A262V, and V296I) with the amino acid combination PAV identifying the taster variant (and AVI identifying the non-taster variant). [provided by RefSeq, Oct 2009]

TAS2R39 Gene

taste receptor, type 2, member 39

OR4A6P Gene

olfactory receptor, family 4, subfamily A, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A25 Gene

olfactory receptor, family 2, subfamily A, member 25

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E161P Gene

olfactory receptor, family 7, subfamily E, member 161 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100133315 Gene

transient receptor potential cation channel, subfamily C, member 2-like

PTPRR Gene

protein tyrosine phosphatase, receptor type, R

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracellular catalytic domain, and thus represents a receptor-type PTP. Silencing of this gene has been associated with colorectal cancer. Multiple transcript variants encoding different isoforms have been found for this gene. This gene shares a symbol (PTPRQ) with another gene, protein tyrosine phosphatase, receptor type, Q (GeneID 374462), which is also located on chromosome 12. [provided by RefSeq, May 2011]

PVRIG Gene

poliovirus receptor related immunoglobulin domain containing

GPR143P Gene

G protein-coupled receptor 143 pseudogene

OR9P1P Gene

olfactory receptor, family 9, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418656 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

LOC100418655 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

LOC100418654 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418653 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

LOC100418659 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100418658 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

LOC100421929 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100421927 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

SPSB3 Gene

splA/ryanodine receptor domain and SOCS box containing 3

SPSB2 Gene

splA/ryanodine receptor domain and SOCS box containing 2

This gene encodes encodes a suppressor of cytokine signaling (SOCS) family member, and it belongs to the subfamily of proteins containing a central SPRY (repeats in splA and RyR) domain and a C-terminal SOCS box. This gene is present in a gene-rich cluster on chromosome 12p13 in the vicinity of the CD4 antigen and triosephosphate isomerase genes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2009]

SPSB1 Gene

splA/ryanodine receptor domain and SOCS box containing 1

OR2BH1P Gene

olfactory receptor, family 2, subfamily BH, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A1 Gene

olfactory receptor, family 2, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A2 Gene

olfactory receptor, family 2, subfamily A, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A5 Gene

olfactory receptor, family 2, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A4 Gene

olfactory receptor, family 2, subfamily A, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A7 Gene

olfactory receptor, family 2, subfamily A, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BN2P Gene

olfactory receptor, family 5, subfamily BN, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R60P Gene

vomeronasal 1 receptor 60 pseudogene

OR51J1 Gene

olfactory receptor, family 51, subfamily J, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AD1 Gene

olfactory receptor, family 10, subfamily AD, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR160 Gene

G protein-coupled receptor 160

GPR161 Gene

G protein-coupled receptor 161

Upon ligand binding, G protein-coupled receptors, such as GPR161, activate cytoplasmic G proteins (see GNAS, MIM 139320), allowing the receptors to transduce extracellular signals across the plasma membrane into the cell. Phosphorylation of the receptor attenuates signaling (Matteson et al., 2008 [PubMed 18250320]).[supplied by OMIM, Aug 2008]

LOC105379760 Gene

olfactory receptor 7E24-like

TSHRL3 Gene

thyroid stimulating hormone receptor-like 3

TSHRL2 Gene

thyroid stimulating hormone receptor-like 2

OR5W1P Gene

olfactory receptor, family 5, subfamily W, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H6 Gene

olfactory receptor, family 5, subfamily H, member 6 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H1 Gene

olfactory receptor, family 5, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H2 Gene

olfactory receptor, family 5, subfamily H, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H8 Gene

olfactory receptor, family 5, subfamily H, member 8 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL12RB1 Gene

interleukin 12 receptor, beta 1

The protein encoded by this gene is a type I transmembrane protein that belongs to the hemopoietin receptor superfamily. This protein binds to interleukine 12 (IL12) with a low affinity, and is thought to be a part of IL12 receptor complex. This protein forms a disulfide-linked oligomer, which is required for its IL12 binding activity. The coexpression of this and IL12RB2 proteins was shown to lead to the formation of high-affinity IL12 binding sites and reconstitution of IL12 dependent signaling. Mutations in this gene impair the development of interleukin-17-producing T lymphocytes and result in increased susceptibility to mycobacterial and Salmonella infections. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

IL12RB2 Gene

interleukin 12 receptor, beta 2

The protein encoded by this gene is a type I transmembrane protein identified as a subunit of the interleukin 12 receptor complex. The coexpression of this and IL12RB1 proteins was shown to lead to the formation of high-affinity IL12 binding sites and reconstitution of IL12 dependent signaling. The expression of this gene is up-regulated by interferon gamma in Th1 cells, and plays a role in Th1 cell differentiation. The up-regulation of this gene is found to be associated with a number of infectious diseases, such as Crohn's disease and leprosy, which is thought to contribute to the inflammatory response and host defense. Several transcript variants encoding different isoforms and non-protein coding transcripts have been found for this gene. [provided by RefSeq, Apr 2012]

OR4N2 Gene

olfactory receptor, family 4, subfamily N, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a seven-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Mar 2014]

OR4N4 Gene

olfactory receptor, family 4, subfamily N, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4N5 Gene

olfactory receptor, family 4, subfamily N, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GABRB2 Gene

gamma-aminobutyric acid (GABA) A receptor, beta 2

The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, beta 2 subunit. It is mapped to chromosome 5q34 in a cluster comprised of genes encoding alpha 1 and gamma 2 subunits of the GABA A receptor. Alternative splicing of this gene generates 2 transcript variants, differing by a 114 bp insertion. [provided by RefSeq, Jul 2008]

OR2AI1P Gene

olfactory receptor, family 2, subfamily AI, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422018 Gene

olfactory receptor, family 7, subfamily E, member 24 pseudogene

LOC100422017 Gene

olfactory receptor, family 4, subfamily F, member 5 pseudogene

LOC100422011 Gene

olfactory receptor, family 8, subfamily A, member 1 pseudogene

LOC100422137 Gene

olfactory receptor, family 4, subfamily A, member 15 pseudogene

LOC100422136 Gene

olfactory receptor, family 4, subfamily A, member 16 pseudogene

OR4A45P Gene

olfactory receptor, family 4, subfamily A, member 45 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL1RAPL1 Gene

interleukin 1 receptor accessory protein-like 1

The protein encoded by this gene is a member of the interleukin 1 receptor family and is similar to the interleukin 1 accessory proteins. It is most closely related to interleukin 1 receptor accessory protein-like 2 (IL1RAPL2). This gene and IL1RAPL2 are located at a region on chromosome X that is associated with X-linked non-syndromic mental retardation. Deletions and mutations in this gene were found in patients with mental retardation. This gene is expressed at a high level in post-natal brain structures involved in the hippocampal memory system, which suggests a specialized role in the physiological processes underlying memory and learning abilities. [provided by RefSeq, Jul 2008]

IL1RAPL2 Gene

interleukin 1 receptor accessory protein-like 2

The protein encoded by this gene is a member of the interleukin 1 receptor family. This protein is similar to the interleukin 1 accessory proteins, and is most closely related to interleukin 1 receptor accessory protein-like 1 (IL1RAPL1). This gene and IL1RAPL1 are located at a region on chromosome X that is associated with X-linked non-syndromic mental retardation. [provided by RefSeq, Jul 2008]

IL15RA Gene

interleukin 15 receptor, alpha

This gene encodes a cytokine receptor that specifically binds interleukin 15 (IL15) with high affinity. The receptors of IL15 and IL2 share two subunits, IL2R beta and IL2R gamma. This forms the basis of many overlapping biological activities of IL15 and IL2. The protein encoded by this gene is structurally related to IL2R alpha, an additional IL2-specific alpha subunit necessary for high affinity IL2 binding. Unlike IL2RA, IL15RA is capable of binding IL15 with high affinity independent of other subunits, which suggests distinct roles between IL15 and IL2. This receptor is reported to enhance cell proliferation and expression of apoptosis inhibitor BCL2L1/BCL2-XL and BCL2. Multiple alternatively spliced transcript variants of this gene have been reported.[provided by RefSeq, Apr 2010]

OR2T3 Gene

olfactory receptor, family 2, subfamily T, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100420641 Gene

TNF receptor-associated factor 7, E3 ubiquitin protein ligase pseudogene

PTGFRN Gene

prostaglandin F2 receptor inhibitor

VN1R107P Gene

vomeronasal 1 receptor 107 pseudogene

OR4K12P Gene

olfactory receptor, family 4, subfamily K, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

MTNR1B Gene

melatonin receptor 1B

This gene encodes one of two high affinity forms of a receptor for melatonin, the primary hormone secreted by the pineal gland. This gene product is an integral membrane protein that is a G-protein coupled, 7-transmembrane receptor. It is found primarily in the retina and brain although this detection requires RT-PCR. It is thought to participate in light-dependent functions in the retina and may be involved in the neurobiological effects of melatonin. [provided by RefSeq, Jul 2008]

LOC100421061 Gene

hepatitis A virus cellular receptor 1 pseudogene

MTNR1A Gene

melatonin receptor 1A

This gene encodes one of two high affinity forms of a receptor for melatonin, the primary hormone secreted by the pineal gland. This receptor is a G-protein coupled, 7-transmembrane receptor that is responsible for melatonin effects on mammalian circadian rhythm and reproductive alterations affected by day length. The receptor is an integral membrane protein that is readily detectable and localized to two specific regions of the brain. The hypothalamic suprachiasmatic nucleus appears to be involved in circadian rhythm while the hypophysial pars tuberalis may be responsible for the reproductive effects of melatonin. [provided by RefSeq, Jul 2008]

OR5B10P Gene

olfactory receptor, family 5, subfamily B, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2G1P Gene

olfactory receptor, family 2, subfamily G, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L6P Gene

olfactory receptor, family 2, subfamily L, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1F1 Gene

olfactory receptor, family 1, subfamily F, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422081 Gene

olfactory receptor, family 4, subfamily E, member 2 pseudogene

PTPRU Gene

protein tyrosine phosphatase, receptor type, U

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. This PTP was thought to play roles in cell-cell recognition and adhesion. Studies of the similar gene in mice suggested the role of this PTP in early neural development. The expression of this gene was reported to be regulated by phorbol myristate acetate (PMA) or calcium ionophore in Jurkat T lymphoma cells. Alternatively spliced transcript variants have been reported. [provided by RefSeq, Aug 2010]

PTPRT Gene

protein tyrosine phosphatase, receptor type, T

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracellular catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP (MAM) domain, Ig-like and fibronectin type III-like repeats. The protein domain structure and the expression pattern of the mouse counterpart of this PTP suggest its roles in both signal transduction and cellular adhesion in the central nervous system. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRS Gene

protein tyrosine phosphatase, receptor type, S

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of multiple Ig-like and fibronectin type III-like domains. Studies of the similar gene in mice suggested that this PTP may be involved in cell-cell interaction, primary axonogenesis, and axon guidance during embryogenesis. This PTP has been also implicated in the molecular control of adult nerve repair. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRQ Gene

protein tyrosine phosphatase, receptor type, Q

This locus encodes a member of the type III receptor-like protein-tyrosine phosphatase family. The encoded protein catalyzes the dephosphorylation of phosphotyrosine and phosphatidylinositol and plays roles in cellular proliferation and differentiation. Mutations at this locus have been linked to autosomal recessive deafness. [provided by RefSeq, Mar 2014]

PTPRG Gene

protein tyrosine phosphatase, receptor type, G

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this PTP contains a carbonic anhydrase-like (CAH) domain, which is also found in the extracellular region of PTPRBETA/ZETA. This gene is located in a chromosomal region that is frequently deleted in renal cell carcinoma and lung carcinoma, thus is thought to be a candidate tumor suppressor gene. [provided by RefSeq, Jul 2008]

PTPRF Gene

protein tyrosine phosphatase, receptor type, F

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains three Ig-like domains, and nine non-Ig like domains similar to that of neural-cell adhesion molecule. This PTP was shown to function in the regulation of epithelial cell-cell contacts at adherents junctions, as well as in the control of beta-catenin signaling. An increased expression level of this protein was found in the insulin-responsive tissue of obese, insulin-resistant individuals, and may contribute to the pathogenesis of insulin resistance. Two alternatively spliced transcript variants of this gene, which encode distinct proteins, have been reported. [provided by RefSeq, Jul 2008]

PTPRE Gene

protein tyrosine phosphatase, receptor type, E

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Two alternatively spliced transcript variants of this gene have been reported, one of which encodes a receptor-type PTP that possesses a short extracellular domain, a single transmembrane region, and two tandem intracytoplasmic catalytic domains; Another one encodes a PTP that contains a distinct hydrophilic N-terminus, and thus represents a nonreceptor-type isoform of this PTP. Studies of the similar gene in mice suggested the regulatory roles of this PTP in RAS related signal transduction pathways, cytokines induced SATA signaling, as well as the activation of voltage-gated K+ channels. [provided by RefSeq, Jul 2008]

PTPRD Gene

protein tyrosine phosphatase, receptor type, D

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular region, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. The extracellular region of this protein is composed of three Ig-like and eight fibronectin type III-like domains. Studies of the similar genes in chicken and fly suggest the role of this PTP is in promoting neurite growth, and regulating neurons axon guidance. Multiple alternatively spliced transcript variants of this gene have been reported. A related pseudogene has been identified on chromosome 5. [provided by RefSeq, Jan 2010]

PTPRC Gene

protein tyrosine phosphatase, receptor type, C

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitosis, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus is classified as a receptor type PTP. This PTP has been shown to be an essential regulator of T- and B-cell antigen receptor signaling. It functions through either direct interaction with components of the antigen receptor complexes, or by activating various Src family kinases required for the antigen receptor signaling. This PTP also suppresses JAK kinases, and thus functions as a regulator of cytokine receptor signaling. Alternatively spliced transcripts variants of this gene, which encode distinct isoforms, have been reported. [provided by RefSeq, Jun 2012]

PTPRB Gene

protein tyrosine phosphatase, receptor type, B

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and one intracytoplasmic catalytic domain, thus belongs to receptor type PTP. The extracellular region of this PTP is composed of multiple fibronectin type_III repeats, which was shown to interact with neuronal receptor and cell adhesion molecules, such as contactin and tenascin C. This protein was also found to interact with sodium channels, and thus may regulate sodium channels by altering tyrosine phosphorylation status. The functions of the interaction partners of this protein implicate the roles of this PTP in cell adhesion, neurite growth, and neuronal differentiation. Alternate transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2011]

PTPRA Gene

protein tyrosine phosphatase, receptor type, A

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains an extracellular domain, a single transmembrane segment and two tandem intracytoplasmic catalytic domains, and thus represents a receptor-type PTP. This PTP has been shown to dephosphorylate and activate Src family tyrosine kinases, and is implicated in the regulation of integrin signaling, cell adhesion and proliferation. Three alternatively spliced variants of this gene, which encode two distinct isoforms, have been reported. [provided by RefSeq, Jul 2008]

PTPRO Gene

protein tyrosine phosphatase, receptor type, O

This gene encodes a member of the R3 subtype family of receptor-type protein tyrosine phosphatases. These proteins are localized to the apical surface of polarized cells and may have tissue-specific functions through activation of Src family kinases. This gene contains two distinct promoters, and alternatively spliced transcript variants encoding multiple isoforms have been observed. The encoded proteins may have multiple isoform-specific and tissue-specific functions, including the regulation of osteoclast production and activity, inhibition of cell proliferation and facilitation of apoptosis. This gene is a candidate tumor suppressor, and decreased expression of this gene has been observed in several types of cancer. [provided by RefSeq, May 2011]

PTPRN Gene

protein tyrosine phosphatase, receptor type, N

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single catalytic domain, and thus represents a receptor-type PTP. This PTP was found to be an autoantigen that is reactive with insulin-dependent diabetes mellitus (IDDM) patient sera, and thus may be a potential target of autoimmunity in diabetes mellitus. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Dec 2010]

PTPRM Gene

protein tyrosine phosphatase, receptor type, M

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP has been shown to mediate cell-cell aggregation through the interaction with another molecule of this PTP on an adjacent cell. This PTP can interact with scaffolding protein RACK1/GNB2L1, which may be necessary for the downstream signaling in response to cell-cell adhesion. Alternative splicing results in multiple transcripts encoding distinct isoforms. [provided by RefSeq, Jul 2008]

PTPRK Gene

protein tyrosine phosphatase, receptor type, K

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and two tandem catalytic domains, and thus represents a receptor-type PTP. The extracellular region contains a meprin-A5 antigen-PTP mu (MAM) domain, an Ig-like domain and four fibronectin type III-like repeats. This PTP was shown to mediate homophilic intercellular interaction, possibly through the interaction with beta- and gamma-catenin at adherens junctions. Expression of this gene was found to be stimulated by TGF-beta 1, which may be important for the inhibition of keratinocyte proliferation. [provided by RefSeq, Jul 2008]

PTPRJ Gene

protein tyrosine phosphatase, receptor type, J

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region containing five fibronectin type III repeats, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. This protein is present in all hematopoietic lineages, and was shown to negatively regulate T cell receptor signaling possibly through interfering with the phosphorylation of Phospholipase C Gamma 1 and Linker for Activation of T Cells. This protein can also dephosphorylate the PDGF beta receptor, and may be involved in UV-induced signal transduction. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

PTPRH Gene

protein tyrosine phosphatase, receptor type, H

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. The extracellular region contains eight fibronectin type III-like repeats and multiple N-glycosylation sites. The gene was shown to be expressed primarily in brain and liver, and at a lower level in heart and stomach. It was also found to be expressed in several cancer cell lines, but not in the corresponding normal tissues. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2009]

HAVCR1P1 Gene

hepatitis A virus cellular receptor 1 pseudogene 1

TRAV1-1 Gene

T cell receptor alpha variable 1-1

TRAV1-2 Gene

T cell receptor alpha variable 1-2

OR10R3P Gene

olfactory receptor, family 10, subfamily R, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTGDR2 Gene

prostaglandin D2 receptor 2

This gene encodes a G-protein-coupled receptor that is preferentially expressed in CD4+ effector T helper 2 (Th2) cells. This protein is a prostaglandin D2 receptor that mediates the pro-inflammatory chemotaxis of eosinophils, basophils, and Th2 lymphocytes generated during allergic inflammation. Single nucleotide polymorphisms in the 3' UTR of this gene have been associated with asthma susceptibility.[provided by RefSeq, Mar 2011]

LOC650866 Gene

transient receptor potential cation channel, subfamily C, member 6 pseudogene

FGFRL1 Gene

fibroblast growth factor receptor-like 1

The protein encoded by this gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein would consist of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. A marked difference between this gene product and the other family members is its lack of a cytoplasmic tyrosine kinase domain. The result is a transmembrane receptor that could interact with other family members and potentially inhibit signaling. Multiple alternatively spliced transcript variants encoding the same isoform have been found for this gene. [provided by RefSeq, Jul 2008]

CRLF2 Gene

cytokine receptor-like factor 2

This gene encodes a member of the type I cytokine receptor family. The encoded protein is a receptor for thymic stromal lymphopoietin (TSLP). Together with the interleukin 7 receptor (IL7R), the encoded protein and TSLP activate STAT3, STAT5, and JAK2 pathways, which control processes such as cell proliferation and development of the hematopoietic system. Rearrangement of this gene with immunoglobulin heavy chain gene (IGH) on chromosome 14, or with P2Y purinoceptor 8 gene (P2RY8) on the same X or Y chromosomes is associated with B-progenitor acute lymphoblastic leukemia (ALL) and Down syndrome ALL. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Sep 2014]

CRLF3 Gene

cytokine receptor-like factor 3

This gene encodes a cytokine receptor-like factor that may negatively regulate cell cycle progression at the G0/G1 phase. Studies of the related rat protein suggest that it may regulate neuronal morphology and synaptic vesicle biogenesis. This gene is one of several genes located in the neurofibromatosis type I tumor suppressor region on the q arm of chromosome 17, a region that is subject to microdeletions, duplications, chromosomal breaks and rearrangements. Alternative splicing of this gene results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 2 and 5. [provided by RefSeq, Aug 2012]

CRLF1 Gene

cytokine receptor-like factor 1

This gene encodes a member of the cytokine type I receptor family. The protein forms a secreted complex with cardiotrophin-like cytokine factor 1 and acts on cells expressing ciliary neurotrophic factor receptors. The complex can promote survival of neuronal cells. Mutations in this gene result in Crisponi syndrome and cold-induced sweating syndrome. [provided by RefSeq, Oct 2009]

OR7E86P Gene

olfactory receptor, family 7, subfamily E, member 86 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11M1P Gene

olfactory receptor, family 11, subfamily M, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

EDAR Gene

ectodysplasin A receptor

This gene encodes a member of the tumor necrosis factor receptor family. The encoded transmembrane protein is a receptor for the soluble ligand ectodysplasin A, and can activate the nuclear factor-kappaB, JNK, and caspase-independent cell death pathways. It is required for the development of hair, teeth, and other ectodermal derivatives. Mutations in this gene result in autosomal dominant and recessive forms of hypohidrotic ectodermal dysplasia. [provided by RefSeq, Jul 2008]

TNFRSF17 Gene

tumor necrosis factor receptor superfamily, member 17

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is preferentially expressed in mature B lymphocytes, and may be important for B cell development and autoimmune response. This receptor has been shown to specifically bind to the tumor necrosis factor (ligand) superfamily, member 13b (TNFSF13B/TALL-1/BAFF), and to lead to NF-kappaB and MAPK8/JNK activation. This receptor also binds to various TRAF family members, and thus may transduce signals for cell survival and proliferation. [provided by RefSeq, Jul 2008]

TNFRSF14 Gene

tumor necrosis factor receptor superfamily, member 14

This gene encodes a member of the TNF (tumor necrosis factor) receptor superfamily. The encoded protein functions in signal transduction pathways that activate inflammatory and inhibitory T-cell immune response. It binds herpes simplex virus (HSV) viral envelope glycoprotein D (gD), mediating its entry into cells. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2014]

TNFRSF18 Gene

tumor necrosis factor receptor superfamily, member 18

This gene encodes a member of the TNF-receptor superfamily. The encoded receptor has been shown to have increased expression upon T-cell activation, and it is thought to play a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells. Knockout studies in mice also suggest the role of this receptor is in the regulation of CD3-driven T-cell activation and programmed cell death. Three alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Feb 2011]

TNFRSF19 Gene

tumor necrosis factor receptor superfamily, member 19

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is highly expressed during embryonic development. It has been shown to interact with TRAF family members, and to activate JNK signaling pathway when overexpressed in cells. This receptor is capable of inducing apoptosis by a caspase-independent mechanism, and it is thought to play an essential role in embryonic development. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

TNFRSF1B Gene

tumor necrosis factor receptor superfamily, member 1B

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein and TNF-receptor 1 form a heterocomplex that mediates the recruitment of two anti-apoptotic proteins, c-IAP1 and c-IAP2, which possess E3 ubiquitin ligase activity. The function of IAPs in TNF-receptor signalling is unknown, however, c-IAP1 is thought to potentiate TNF-induced apoptosis by the ubiquitination and degradation of TNF-receptor-associated factor 2, which mediates anti-apoptotic signals. Knockout studies in mice also suggest a role of this protein in protecting neurons from apoptosis by stimulating antioxidative pathways. [provided by RefSeq, Jul 2008]

TNFRSF1A Gene

tumor necrosis factor receptor superfamily, member 1A

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein is one of the major receptors for the tumor necrosis factor-alpha. This receptor can activate NF-kappaB, mediate apoptosis, and function as a regulator of inflammation. Antiapoptotic protein BCL2-associated athanogene 4 (BAG4/SODD) and adaptor proteins TRADD and TRAF2 have been shown to interact with this receptor, and thus play regulatory roles in the signal transduction mediated by the receptor. Germline mutations of the extracellular domains of this receptor were found to be associated with the autosomal dominant periodic fever syndrome. The impaired receptor clearance is thought to be a mechanism of the disease. [provided by RefSeq, Jul 2008]

VN2R2P Gene

vomeronasal 2 receptor 2 pseudogene

GPR53P Gene

G protein-coupled receptor 53, pseudogene

OR2T32P Gene

olfactory receptor, family 2, subfamily T, member 32 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421972 Gene

olfactory receptor, family 5, subfamily A, member 2 pseudogene

CCR6 Gene

chemokine (C-C motif) receptor 6

This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. The gene is preferentially expressed by immature dendritic cells and memory T cells. The ligand of this receptor is macrophage inflammatory protein 3 alpha (MIP-3 alpha). This receptor has been shown to be important for B-lineage maturation and antigen-driven B-cell differentiation, and it may regulate the migration and recruitment of dentritic and T cells during inflammatory and immunological responses. Alternatively spliced transcript variants that encode the same protein have been described for this gene. [provided by RefSeq, Jul 2008]

LOC100418499 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418498 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

LOC100418497 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

OR7C2 Gene

olfactory receptor, family 7, subfamily C, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7C1 Gene

olfactory receptor, family 7, subfamily C, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R80P Gene

vomeronasal 1 receptor 80 pseudogene

VN1R11P Gene

vomeronasal 1 receptor 11 pseudogene

OR6C3 Gene

olfactory receptor, family 6, subfamily C, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C2 Gene

olfactory receptor, family 6, subfamily C, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C1 Gene

olfactory receptor, family 6, subfamily C, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C6 Gene

olfactory receptor, family 6, subfamily C, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C4 Gene

olfactory receptor, family 6, subfamily C, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GHSR Gene

growth hormone secretagogue receptor

This gene encodes a member of the G-protein coupled receptor family. The encoded protein may play a role in energy homeostasis and regulation of body weight. Two identified transcript variants are expressed in several tissues and are evolutionary conserved in fish and swine. One transcript, 1a, excises an intron and encodes the functional protein; this protein is the receptor for the Ghrelin ligand and defines a neuroendocrine pathway for growth hormone release. The second transcript (1b) retains the intron and does not function as a receptor for Ghrelin; however, it may function to attenuate activity of isoform 1a. Mutations in this gene are associated with autosomal idiopathic short stature.[provided by RefSeq, Apr 2010]

OR7E13P Gene

olfactory receptor, family 7, subfamily E, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LRP1B Gene

low density lipoprotein receptor-related protein 1B

LRP1B belongs to the low density lipoprotein (LDL) receptor gene family. These receptors play a wide variety of roles in normal cell function and development due to their interactions with multiple ligands (Liu et al., 2001 [PubMed 11384978]).[supplied by OMIM, Mar 2008]

LRP10 Gene

low density lipoprotein receptor-related protein 10

LRP11 Gene

low density lipoprotein receptor-related protein 11

LRP12 Gene

low density lipoprotein receptor-related protein 12

This gene encodes a member of the low-density lipoprotein receptor related protein family. The product of this gene is a transmembrane protein that is differentially expressed in many cancer cells. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]

OR7E28P Gene

olfactory receptor, family 7, subfamily E, member 28 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418681 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

EPS15P1 Gene

epidermal growth factor receptor pathway substrate 15 pseudogene 1

LOC100420482 Gene

G protein-coupled receptor 160 pseudogene

OR2J1 Gene

olfactory receptor, family 2, subfamily J, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100129554 Gene

thyroid hormone receptor interactor 4 pseudogene

OR10V7P Gene

olfactory receptor, family 10, subfamily V, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7A3P Gene

olfactory receptor, family 7, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC102723632 Gene

olfactory receptor 4S2-like

CD40 Gene

CD40 molecule, TNF receptor superfamily member 5

This gene is a member of the TNF-receptor superfamily. The encoded protein is a receptor on antigen-presenting cells of the immune system and is essential for mediating a broad variety of immune and inflammatory responses including T cell-dependent immunoglobulin class switching, memory B cell development, and germinal center formation. AT-hook transcription factor AKNA is reported to coordinately regulate the expression of this receptor and its ligand, which may be important for homotypic cell interactions. Adaptor protein TNFR2 interacts with this receptor and serves as a mediator of the signal transduction. The interaction of this receptor and its ligand is found to be necessary for amyloid-beta-induced microglial activation, and thus is thought to be an early event in Alzheimer disease pathogenesis. Mutations affecting this gene are the cause of autosomal recessive hyper-IgM immunodeficiency type 3 (HIGM3). Multiple alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. [provided by RefSeq, Nov 2014]

LOC105371179 Gene

proline-rich receptor-like protein kinase PERK2

IL31RA Gene

interleukin 31 receptor A

The protein encoded by this gene belongs to the type I cytokine receptor family. This receptor, with homology to gp130, is expressed on monocytes, and is involved in IL-31 signaling via activation of STAT-3 and STAT-5. It functions either as a monomer, or as part of a receptor complex with oncostatin M receptor (OSMR). Several alternatively spliced transcript variants encoding different isoforms have been noted for this gene.[provided by RefSeq, Jun 2011]

LOC105369139 Gene

killer cell immunoglobulin-like receptor 2DS3

OR5D2P Gene

olfactory receptor, family 5, subfamily D, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8D4 Gene

olfactory receptor, family 8, subfamily D, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8D1 Gene

olfactory receptor, family 8, subfamily D, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8D2 Gene

olfactory receptor, family 8, subfamily D, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422166 Gene

olfactory receptor, family 4, subfamily A, member 16 pseudogene

LOC100422160 Gene

olfactory receptor, family 56, subfamily B, member 4 pseudogene

LOC100422161 Gene

olfactory receptor, family 52, subfamily N, member 2 pseudogene

LOC100422163 Gene

olfactory receptor, family 52, subfamily E, member 4 pseudogene

HTR5BP Gene

5-hydroxytryptamine (serotonin) receptor 5B, pseudogene

LOC105369868 Gene

macrophage mannose receptor 1-like

OR2Y1 Gene

olfactory receptor, family 2, subfamily Y, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E130P Gene

olfactory receptor, family 7, subfamily E, member 130 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCGR2B Gene

Fc fragment of IgG, low affinity IIb, receptor (CD32)

The protein encoded by this gene is a low affinity receptor for the Fc region of immunoglobulin gamma complexes. The encoded protein is involved in the phagocytosis of immune complexes and in the regulation of antibody production by B-cells. Variations in this gene may increase susceptibilty to systemic lupus erythematosus (SLE). Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2010]

FCGR2C Gene

Fc fragment of IgG, low affinity IIc, receptor for (CD32) (gene/pseudogene)

This gene encodes one of three members of a family of low-affinity immunoglobulin gamma Fc receptors found on the surface of many immune response cells. The encoded protein is a transmembrane glycoprotein and may be involved in phagocytosis and clearing of immune complexes. An allelic polymorphism in this gene results in both coding and non-coding variants. [provided by RefSeq, Apr 2012]

FCGR2A Gene

Fc fragment of IgG, low affinity IIa, receptor (CD32)

This gene encodes one member of a family of immunoglobulin Fc receptor genes found on the surface of many immune response cells. The protein encoded by this gene is a cell surface receptor found on phagocytic cells such as macrophages and neutrophils, and is involved in the process of phagocytosis and clearing of immune complexes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2008]

CALCR Gene

calcitonin receptor

This gene encodes a high affinity receptor for the peptide hormone calcitonin and belongs to a subfamily of seven transmembrane-spanning G protein-coupled receptors. The encoded protein is involved in maintaining calcium homeostasis and in regulating osteoclast-mediated bone resorption. Polymorphisms in this gene have been associated with variations in bone mineral density and onset of osteoporosis. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Sep 2009]

VN1R35P Gene

vomeronasal 1 receptor 35 pseudogene

OR5BM1P Gene

olfactory receptor, family 5, subfamily BM, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B5 Gene

olfactory receptor, family 51, subfamily B, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B4 Gene

olfactory receptor, family 51, subfamily B, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B6 Gene

olfactory receptor, family 51, subfamily B, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B2 Gene

olfactory receptor, family 51, subfamily B, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R68P Gene

vomeronasal 1 receptor 68 pseudogene

FCER2 Gene

Fc fragment of IgE, low affinity II, receptor for (CD23)

The protein encoded by this gene is a B-cell specific antigen, and a low-affinity receptor for IgE. It has essential roles in B cell growth and differentiation, and the regulation of IgE production. This protein also exists as a soluble secreted form, then functioning as a potent mitogenic growth factor. Alternatively spliced transcript variants encoding different isoforms have been described for this gene.[provided by RefSeq, Jul 2011]

LOC100418510 Gene

MAS1 proto-oncogene like, G protein-coupled receptor pseudogene

OR52D1 Gene

olfactory receptor, family 52, subfamily D, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

AMHR2 Gene

anti-Mullerian hormone receptor, type II

This gene encodes the receptor for the anti-Mullerian hormone (AMH) which, in addition to testosterone, results in male sex differentiation. AMH and testosterone are produced in the testes by different cells and have different effects. Testosterone promotes the development of male genitalia while the binding of AMH to the encoded receptor prevents the development of the mullerian ducts into uterus and Fallopian tubes. Mutations in this gene are associated with persistent Mullerian duct syndrome type II. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Sep 2009]

NR1I3 Gene

nuclear receptor subfamily 1, group I, member 3

This gene encodes a member of the nuclear receptor superfamily, and is a key regulator of xenobiotic and endobiotic metabolism. The protein binds to DNA as a monomer or a heterodimer with the retinoid X receptor and regulates the transcription of target genes involved in drug metabolism and bilirubin clearance, such as cytochrome P450 family members. Unlike most nuclear receptors, this transcriptional regulator is constitutively active in the absence of ligand but is regulated by both agonists and inverse agonists. Ligand binding results in translocation of this protein to the nucleus, where it activates or represses target gene transcription. These ligands include bilirubin, a variety of foreign compounds, steroid hormones, and prescription drugs. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

NR1I2 Gene

nuclear receptor subfamily 1, group I, member 2

This gene product belongs to the nuclear receptor superfamily, members of which are transcription factors characterized by a ligand-binding domain and a DNA-binding domain. The encoded protein is a transcriptional regulator of the cytochrome P450 gene CYP3A4, binding to the response element of the CYP3A4 promoter as a heterodimer with the 9-cis retinoic acid receptor RXR. It is activated by a range of compounds that induce CYP3A4, including dexamethasone and rifampicin. Several alternatively spliced transcripts encoding different isoforms, some of which use non-AUG (CUG) translation initiation codon, have been described for this gene. Additional transcript variants exist, however, they have not been fully characterized. [provided by RefSeq, Jul 2008]

GRB2 Gene

growth factor receptor-bound protein 2

The protein encoded by this gene binds the epidermal growth factor receptor and contains one SH2 domain and two SH3 domains. Its two SH3 domains direct complex formation with proline-rich regions of other proteins, and its SH2 domain binds tyrosine phosphorylated sequences. This gene is similar to the Sem5 gene of C.elegans, which is involved in the signal transduction pathway. Two alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]

GRB7 Gene

growth factor receptor-bound protein 7

The product of this gene belongs to a small family of adapter proteins that are known to interact with a number of receptor tyrosine kinases and signaling molecules. This gene encodes a growth factor receptor-binding protein that interacts with epidermal growth factor receptor (EGFR) and ephrin receptors. The protein plays a role in the integrin signaling pathway and cell migration by binding with focal adhesion kinase (FAK). Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jun 2011]

OR4F3 Gene

olfactory receptor, family 4, subfamily F, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F6 Gene

olfactory receptor, family 4, subfamily F, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F4 Gene

olfactory receptor, family 4, subfamily F, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4F5 Gene

olfactory receptor, family 4, subfamily F, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5B21 Gene

olfactory receptor, family 5, subfamily B, member 21

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5AP1P Gene

olfactory receptor, family 5, subfamily AP, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AT4 Gene

olfactory receptor, family 2, subfamily AT, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4K6P Gene

olfactory receptor, family 4, subfamily K, member 6 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1N2 Gene

olfactory receptor, family 1, subfamily N, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR1N1 Gene

olfactory receptor, family 1, subfamily N, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2AT1P Gene

olfactory receptor, family 2, subfamily AT, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL17RB Gene

interleukin 17 receptor B

The protein encoded by this gene is a cytokine receptor. This receptor specifically binds to IL17B and IL17E, but does not bind to IL17 and IL17C. This receptor has been shown to mediate the activation of NF-kappaB and the production of IL8 induced by IL17E. The expression of the rat counterpart of this gene was found to be significantly up-regulated during intestinal inflammation, which suggested the immunoregulatory activity of this receptor. [provided by RefSeq, Jul 2008]

IFNLR1 Gene

interferon, lambda receptor 1

The protein encoded by this gene belongs to the class II cytokine receptor family. This protein forms a receptor complex with interleukine 10 receptor, beta (IL10RB). The receptor complex has been shown to interact with three closely related cytokines, including interleukin 28A (IL28A), interleukin 28B (IL28B), and interleukin 29 (IL29). The expression of all three cytokines can be induced by viral infection. The cells overexpressing this protein have been found to have enhanced responses to IL28A and IL29, but decreased response to IL28B. Three alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

OR11A1 Gene

olfactory receptor, family 11, subfamily A, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E117P Gene

olfactory receptor, family 7, subfamily E, member 117 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TGFBR3L Gene

transforming growth factor, beta receptor III-like

VN1R52P Gene

vomeronasal 1 receptor 52 pseudogene

OR7E41P Gene

olfactory receptor, family 7, subfamily E, member 41 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A12 Gene

olfactory receptor, family 2, subfamily A, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2A14 Gene

olfactory receptor, family 2, subfamily A, member 14

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52B1P Gene

olfactory receptor, family 52, subfamily B, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

S1PR3 Gene

sphingosine-1-phosphate receptor 3

This gene encodes a member of the EDG family of receptors, which are G protein-coupled receptors. This protein has been identified as a functional receptor for sphingosine 1-phosphate and likely contributes to the regulation of angiogenesis and vascular endothelial cell function. [provided by RefSeq, Jul 2008]

S1PR2 Gene

sphingosine-1-phosphate receptor 2

This gene encodes a member of the G protein-coupled receptors, as well as the EDG family of proteins. This protein participates in sphingosine 1-phosphate-induced cell proliferation, survival, and transcriptional activation [provided by RefSeq, Jul 2008]

S1PR1 Gene

sphingosine-1-phosphate receptor 1

The protein encoded by this gene is structurally similar to G protein-coupled receptors and is highly expressed in endothelial cells. It binds the ligand sphingosine-1-phosphate with high affinity and high specificity, and suggested to be involved in the processes that regulate the differentiation of endothelial cells. Activation of this receptor induces cell-cell adhesion. [provided by RefSeq, Jul 2008]

S1PR5 Gene

sphingosine-1-phosphate receptor 5

The lysosphingolipid sphingosine 1-phosphate (S1P) regulates cell proliferation, apoptosis, motility, and neurite retraction. Its actions may be both intracellular as a second messenger and extracellular as a receptor ligand. S1P and the structurally related lysolipid mediator lysophosphatidic acid (LPA) signal cells through a set of G protein-coupled receptors known as EDG receptors. Some EDG receptors (e.g., EDG1; MIM 601974) are S1P receptors; others (e.g., EDG2; MIM 602282) are LPA receptors.[supplied by OMIM, Mar 2008]

S1PR4 Gene

sphingosine-1-phosphate receptor 4

This gene is a member of the endothelial differentiation, G-protein-coupled (EDG)) receptor gene family. EDG receptors bind lysophospholipids or lysosphingolipids as ligands, and are involved in cell signalling in many different cell types. This EDG receptor gene is intronless and is specifically expressed in the lymphoid tissue. [provided by RefSeq, Jul 2008]

RER1 Gene

retention in endoplasmic reticulum sorting receptor 1

The protein encoded by this gene is a multi-pass membrane protein that is localized to the golgi apparatus. It is involved in the retention of endoplasmic reticulum (ER) membrane proteins in the ER and retrieval of ER membrane proteins from the early Golgi compartment to facilitate gamma-secretase complex assembly. [provided by RefSeq, Oct 2009]

OR7E99P Gene

olfactory receptor, family 7, subfamily E, member 99 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TBL1XR1 Gene

transducin (beta)-like 1 X-linked receptor 1

The protein encoded by this gene has sequence similarity with members of the WD40 repeat-containing protein family. The WD40 group is a large family of proteins, which appear to have a regulatory function. It is believed that the WD40 repeats mediate protein-protein interactions and members of the family are involved in signal transduction, RNA processing, gene regulation, vesicular trafficking, cytoskeletal assembly and may play a role in the control of cytotypic differentiation. [provided by RefSeq, Jul 2008]

LOC102724468 Gene

olfactory receptor 4F3/4F16/4F29-like

OR7D11P Gene

olfactory receptor, family 7, subfamily D, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR180 Gene

G protein-coupled receptor 180

This gene encodes a protein that is a member of the G protein-coupled receptor superfamily. This protein is produced predominantly in vascular smooth muscle cells and may play an important role in the regulation of vascular remodeling. [provided by RefSeq, Jul 2008]

OR11J2P Gene

olfactory receptor, family 11, subfamily J, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TLR2 Gene

toll-like receptor 2

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is expressed most abundantly in peripheral blood leukocytes, and mediates host response to Gram-positive bacteria and yeast via stimulation of NF-kappaB. [provided by RefSeq, Jul 2008]

TLR3 Gene

toll-like receptor 3

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This receptor is most abundantly expressed in placenta and pancreas, and is restricted to the dendritic subpopulation of the leukocytes. It recognizes dsRNA associated with viral infection, and induces the activation of NF-kappaB and the production of type I interferons. It may thus play a role in host defense against viruses. Use of alternative polyadenylation sites to generate different length transcripts has been noted for this gene. [provided by RefSeq, Jul 2008]

TLR1 Gene

toll-like receptor 1

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is ubiquitously expressed, and at higher levels than other TLR genes. Different length transcripts presumably resulting from use of alternative polyadenylation site, and/or from alternative splicing, have been noted for this gene. [provided by RefSeq, Jul 2008]

TLR6 Gene

toll-like receptor 6

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This receptor functionally interacts with toll-like receptor 2 to mediate cellular response to bacterial lipoproteins. A Ser249Pro polymorphism in the extracellular domain of the encoded protein may be associated with an increased of asthma is some populations.[provided by RefSeq, Jan 2011]

TLR7 Gene

toll-like receptor 7

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung, placenta, and spleen, and lies in close proximity to another family member, TLR8, on chromosome X. [provided by RefSeq, Jul 2008]

TLR4 Gene

toll-like receptor 4

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This receptor has been implicated in signal transduction events induced by lipopolysaccharide (LPS) found in most gram-negative bacteria. Mutations in this gene have been associated with differences in LPS responsiveness. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

TLR5 Gene

toll-like receptor 5

This gene encodes a member of the toll-like receptor (TLR) family, which plays a fundamental role in pathogen recognition and activation of innate immune responses. These receptors recognize distinct pathogen-associated molecular patterns that are expressed on infectious agents. The protein encoded by this gene recognizes bacterial flagellin, the principal component of bacterial flagella and a virulence factor. The activation of this receptor mobilizes the nuclear factor NF-kappaB, which in turn activates a host of inflammatory-related target genes. Mutations in this gene have been associated with both resistance and susceptibility to systemic lupus erythematosus, and susceptibility to Legionnaire disease.[provided by RefSeq, Dec 2009]

TLR8 Gene

toll-like receptor 8

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung and peripheral blood leukocytes, and lies in close proximity to another family member, TLR7, on chromosome X. [provided by RefSeq, Jul 2008]

TLR9 Gene

toll-like receptor 9

The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is preferentially expressed in immune cell rich tissues, such as spleen, lymph node, bone marrow and peripheral blood leukocytes. Studies in mice and human indicate that this receptor mediates cellular response to unmethylated CpG dinucleotides in bacterial DNA to mount an innate immune response. [provided by RefSeq, Jul 2008]

VN1R21P Gene

vomeronasal 1 receptor 21 pseudogene

ADGRG1 Gene

adhesion G protein-coupled receptor G1

This gene encodes a member of the G protein-coupled receptor family and regulates brain cortical patterning. The encoded protein binds specifically to transglutaminase 2, a component of tissue and tumor stroma implicated as an inhibitor of tumor progression. Mutations in this gene are associated with a brain malformation known as bilateral frontoparietal polymicrogyria. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2014]

VN1R45P Gene

vomeronasal 1 receptor 45 pseudogene

IL27RA Gene

interleukin 27 receptor, alpha

In mice, CD4+ helper T-cells differentiate into type 1 (Th1) cells, which are critical for cell-mediated immunity, predominantly under the influence of IL12. Also, IL4 influences their differentiation into type 2 (Th2) cells, which are critical for most antibody responses. Mice deficient in these cytokines, their receptors, or associated transcription factors have impaired, but are not absent of, Th1 or Th2 immune responses. This gene encodes a protein which is similar to the mouse T-cell cytokine receptor Tccr at the amino acid level, and is predicted to be a glycosylated transmembrane protein. [provided by RefSeq, Jul 2008]

ERRFI1 Gene

ERBB receptor feedback inhibitor 1

ERRFI1 is a cytoplasmic protein whose expression is upregulated with cell growth (Wick et al., 1995 [PubMed 7641805]). It shares significant homology with the protein product of rat gene-33, which is induced during cell stress and mediates cell signaling (Makkinje et al., 2000 [PubMed 10749885]; Fiorentino et al., 2000 [PubMed 11003669]).[supplied by OMIM, Mar 2008]

OR7E121P Gene

olfactory receptor, family 7, subfamily E, member 121 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E5P Gene

olfactory receptor, family 7, subfamily E, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. This family member is believed to be a pseudogene. [provided by RefSeq, Jun 2009]

OR6L2P Gene

olfactory receptor, family 6, subfamily L, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS2R15P Gene

taste receptor, type 2, member 15, pseudogene

OR6K3 Gene

olfactory receptor, family 6, subfamily K, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6K2 Gene

olfactory receptor, family 6, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6K6 Gene

olfactory receptor, family 6, subfamily K, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R19P Gene

vomeronasal 1 receptor 19 pseudogene

TRBV27 Gene

T cell receptor beta variable 27

GHRHR Gene

growth hormone releasing hormone receptor

This gene encodes a receptor for growth hormone-releasing hormone. Binding of this hormone to the receptor leads to synthesis and release of growth hormone. Mutations in this gene have been associated with isolated growth hormone deficiency (IGHD), also known as Dwarfism of Sindh, a disorder characterized by short stature. [provided by RefSeq, Jun 2010]

OR5AK4P Gene

olfactory receptor, family 5, subfamily AK, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ARNT Gene

aryl hydrocarbon receptor nuclear translocator

This gene encodes a protein containing a basic helix-loop-helix domain and two characteristic PAS domains along with a PAC domain. The encoded protein binds to ligand-bound aryl hydrocarbon receptor and aids in the movement of this complex to the nucleus, where it promotes the expression of genes involved in xenobiotic metabolism. This protein is also a co-factor for transcriptional regulation by hypoxia-inducible factor 1. Chromosomal translocation of this locus with the ETV6 (ets variant 6) gene on chromosome 12 have been described in leukemias. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2013]

CUBNP2 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 2

CUBNP3 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 3

CUBNP1 Gene

cubilin (intrinsic factor-cobalamin receptor) pseudogene 1

TRAV38-1 Gene

T cell receptor alpha variable 38-1

OR5G1P Gene

olfactory receptor, family 5, subfamily G, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV3-2 Gene

T cell receptor beta variable 3-2 (pseudogene)

ESR2 Gene

estrogen receptor 2 (ER beta)

This gene encodes a member of the family of estrogen receptors and superfamily of nuclear receptor transcription factors. The gene product contains an N-terminal DNA binding domain and C-terminal ligand binding domain and is localized to the nucleus, cytoplasm, and mitochondria. Upon binding to 17beta-estradiol or related ligands, the encoded protein forms homo- or hetero-dimers that interact with specific DNA sequences to activate transcription. Some isoforms dominantly inhibit the activity of other estrogen receptor family members. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been fully characterized. [provided by RefSeq, Jul 2008]

ESR1 Gene

estrogen receptor 1

This gene encodes an estrogen receptor, a ligand-activated transcription factor composed of several domains important for hormone binding, DNA binding, and activation of transcription. The protein localizes to the nucleus where it may form a homodimer or a heterodimer with estrogen receptor 2. Estrogen and its receptors are essential for sexual development and reproductive function, but also play a role in other tissues such as bone. Estrogen receptors are also involved in pathological processes including breast cancer, endometrial cancer, and osteoporosis. Alternative promoter usage and alternative splicing result in dozens of transcript variants, but the full-length nature of many of these variants has not been determined. [provided by RefSeq, Mar 2014]

KLRF2 Gene

killer cell lectin-like receptor subfamily F, member 2

KLRF1 Gene

killer cell lectin-like receptor subfamily F, member 1

KLRF1, an activating homodimeric C-type lectin-like receptor (CTLR), is expressed on nearly all natural killer (NK) cells and stimulates their cytoxicity and cytokine release (Kuttruff et al., 2009 [PubMed 18922855]).[supplied by OMIM, Oct 2009]

FAS Gene

Fas cell surface death receptor

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains a death domain. It has been shown to play a central role in the physiological regulation of programmed cell death, and has been implicated in the pathogenesis of various malignancies and diseases of the immune system. The interaction of this receptor with its ligand allows the formation of a death-inducing signaling complex that includes Fas-associated death domain protein (FADD), caspase 8, and caspase 10. The autoproteolytic processing of the caspases in the complex triggers a downstream caspase cascade, and leads to apoptosis. This receptor has been also shown to activate NF-kappaB, MAPK3/ERK1, and MAPK8/JNK, and is found to be involved in transducing the proliferating signals in normal diploid fibroblast and T cells. Several alternatively spliced transcript variants have been described, some of which are candidates for nonsense-mediated mRNA decay (NMD). The isoforms lacking the transmembrane domain may negatively regulate the apoptosis mediated by the full length isoform. [provided by RefSeq, Mar 2011]

OR51A9P Gene

olfactory receptor, family 51, subfamily A, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GLP2R Gene

glucagon-like peptide 2 receptor

This gene encodes a G protein-coupled receptor that is closely related to the glucagon receptor and binds to glucagon-like peptide-2 (GLP2). Signalling through GLP2 stimulates intestinal growth and increases villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. [provided by RefSeq, Dec 2014]

AR Gene

androgen receptor

The androgen receptor gene is more than 90 kb long and codes for a protein that has 3 major functional domains: the N-terminal domain, DNA-binding domain, and androgen-binding domain. The protein functions as a steroid-hormone activated transcription factor. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. This gene contains 2 polymorphic trinucleotide repeat segments that encode polyglutamine and polyglycine tracts in the N-terminal transactivation domain of its protein. Expansion of the polyglutamine tract causes spinal bulbar muscular atrophy (Kennedy disease). Mutations in this gene are also associated with complete androgen insensitivity (CAIS). Two alternatively spliced variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]

OR2M1P Gene

olfactory receptor, family 2, subfamily M, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8K4P Gene

olfactory receptor, family 8, subfamily K, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L5 Gene

olfactory receptor, family 2, subfamily L, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L2 Gene

olfactory receptor, family 2, subfamily L, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L8 Gene

olfactory receptor, family 2, subfamily L, member 8 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR56B3P Gene

olfactory receptor, family 56, subfamily B, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADGRB1 Gene

adhesion G protein-coupled receptor B1

Angiogenesis is controlled by a local balance between stimulators and inhibitors of new vessel growth and is suppressed under normal physiologic conditions. Angiogenesis has been shown to be essential for growth and metastasis of solid tumors. In order to obtain blood supply for their growth, tumor cells are potently angiogenic and attract new vessels as results of increased secretion of inducers and decreased production of endogenous negative regulators. BAI1 contains at least one 'functional' p53-binding site within an intron, and its expression has been shown to be induced by wildtype p53. There are two other brain-specific angiogenesis inhibitor genes, designated BAI2 and BAI3 which along with BAI1 have similar tissue specificities and structures, however only BAI1 is transcriptionally regulated by p53. BAI1 is postulated to be a member of the secretin receptor family, an inhibitor of angiogenesis and a growth suppressor of glioblastomas [provided by RefSeq, Jul 2008]

ADGRB2 Gene

adhesion G protein-coupled receptor B2

This gene encodes a a seven-span transmembrane protein that is thought to be a member of the secretin receptor family. The encoded protein is a brain-specific inhibitor of angiogenesis. The mature peptide may be further cleaved into additional products (PMID:20367554). Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2014]

ADGRB3 Gene

adhesion G protein-coupled receptor B3

This p53-target gene encodes a brain-specific angiogenesis inhibitor, a seven-span transmembrane protein, and is thought to be a member of the secretin receptor family. Brain-specific angiogenesis proteins BAI2 and BAI3 are similar to BAI1 in structure, have similar tissue specificities, and may also play a role in angiogenesis. [provided by RefSeq, Jul 2008]

VN1R70P Gene

vomeronasal 1 receptor 70 pseudogene

TLR12P Gene

toll-like receptor 12, pseudogene

LOC102723532 Gene

olfactory receptor 4N4

OR5M2P Gene

olfactory receptor, family 5, subfamily M, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LEPROTL1 Gene

leptin receptor overlapping transcript-like 1

OR8Q1P Gene

olfactory receptor, family 8, subfamily Q, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LENG1 Gene

leukocyte receptor cluster (LRC) member 1

LENG9 Gene

leukocyte receptor cluster (LRC) member 9

LENG8 Gene

leukocyte receptor cluster (LRC) member 8

GABARAPL1 Gene

GABA(A) receptor-associated protein like 1

GABARAPL2 Gene

GABA(A) receptor-associated protein-like 2

OR4Q3 Gene

olfactory receptor, family 4, subfamily Q, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4Q2 Gene

olfactory receptor, family 4, subfamily Q, member 2 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV12-4 Gene

T cell receptor beta variable 12-4

TRBV12-5 Gene

T cell receptor beta variable 12-5

TRBV12-1 Gene

T cell receptor beta variable 12-1 (pseudogene)

TRBV12-2 Gene

T cell receptor beta variable 12-2 (pseudogene)

TRBV12-3 Gene

T cell receptor beta variable 12-3

OR2A9P Gene

olfactory receptor, family 2, subfamily A, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R25P Gene

vomeronasal 1 receptor 25 pseudogene

OR6K5P Gene

olfactory receptor, family 6, subfamily K, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52M2P Gene

olfactory receptor, family 52, subfamily M, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CCR1 Gene

chemokine (C-C motif) receptor 1

This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. The ligands of this receptor include macrophage inflammatory protein 1 alpha (MIP-1 alpha), regulated on activation normal T expressed and secreted protein (RANTES), monocyte chemoattractant protein 3 (MCP-3), and myeloid progenitor inhibitory factor-1 (MPIF-1). Chemokines and their receptors mediated signal transduction are critical for the recruitment of effector immune cells to the site of inflammation. Knockout studies of the mouse homolog suggested the roles of this gene in host protection from inflammatory response, and susceptibility to virus and parasite. This gene and other chemokine receptor genes, including CCR2, CCRL2, CCR3, CCR5 and CCXCR1, are found to form a gene cluster on chromosome 3p. [provided by RefSeq, Jul 2008]

CCR2 Gene

chemokine (C-C motif) receptor 2

This gene encodes two isoforms of a receptor for monocyte chemoattractant protein-1, a chemokine which specifically mediates monocyte chemotaxis. Monocyte chemoattractant protein-1 is involved in monocyte infiltration in inflammatory diseases such as rheumatoid arthritis as well as in the inflammatory response against tumors. The receptors encoded by this gene mediate agonist-dependent calcium mobilization and inhibition of adenylyl cyclase. This gene is located in the chemokine receptor gene cluster region. Two alternatively spliced transcript variants are expressed by the gene. [provided by RefSeq, Mar 2009]

CCR3 Gene

chemokine (C-C motif) receptor 3

The protein encoded by this gene is a receptor for C-C type chemokines. It belongs to family 1 of the G protein-coupled receptors. This receptor binds and responds to a variety of chemokines, including eotaxin (CCL11), eotaxin-3 (CCL26), MCP-3 (CCL7), MCP-4 (CCL13), and RANTES (CCL5). It is highly expressed in eosinophils and basophils, and is also detected in TH1 and TH2 cells, as well as in airway epithelial cells. This receptor may contribute to the accumulation and activation of eosinophils and other inflammatory cells in the allergic airway. It is also known to be an entry co-receptor for HIV-1. This gene and seven other chemokine receptor genes form a chemokine receptor gene cluster on the chromosomal region 3p21. Alternatively spliced transcript variants have been described. [provided by RefSeq, Sep 2009]

CCR4 Gene

chemokine (C-C motif) receptor 4

The protein encoded by this gene belongs to the G-protein-coupled receptor family . It is a receptor for the CC chemokine - MIP-1, RANTES, TARC and MCP-1. Chemokines are a group of small polypeptide, structurally related molecules that regulate cell trafficking of various types of leukocytes. The chemokines also play fundamental roles in the development, homeostasis, and function of the immune system, and they have effects on cells of the central nervous system as well as on endothelial cells involved in angiogenesis or angiostasis. [provided by RefSeq, Jul 2008]

CCR5 Gene

chemokine (C-C motif) receptor 5 (gene/pseudogene)

This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. This protein is expressed by T cells and macrophages, and is known to be an important co-receptor for macrophage-tropic virus, including HIV, to enter host cells. Defective alleles of this gene have been associated with the HIV infection resistance. The ligands of this receptor include monocyte chemoattractant protein 2 (MCP-2), macrophage inflammatory protein 1 alpha (MIP-1 alpha), macrophage inflammatory protein 1 beta (MIP-1 beta) and regulated on activation normal T expressed and secreted protein (RANTES). Expression of this gene was also detected in a promyeloblastic cell line, suggesting that this protein may play a role in granulocyte lineage proliferation and differentiation. This gene is located at the chemokine receptor gene cluster region. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

CCR7 Gene

chemokine (C-C motif) receptor 7

The protein encoded by this gene is a member of the G protein-coupled receptor family. This receptor was identified as a gene induced by the Epstein-Barr virus (EBV), and is thought to be a mediator of EBV effects on B lymphocytes. This receptor is expressed in various lymphoid tissues and activates B and T lymphocytes. It has been shown to control the migration of memory T cells to inflamed tissues, as well as stimulate dendritic cell maturation. The chemokine (C-C motif) ligand 19 (CCL19/ECL) has been reported to be a specific ligand of this receptor. Signals mediated by this receptor regulate T cell homeostasis in lymph nodes, and may also function in the activation and polarization of T cells, and in chronic inflammation pathogenesis. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, Sep 2014]

CCR8 Gene

chemokine (C-C motif) receptor 8

This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. Chemokines and their receptors are important for the migration of various cell types into the inflammatory sites. This receptor protein preferentially expresses in the thymus. I-309, thymus activation-regulated cytokine (TARC) and macrophage inflammatory protein-1 beta (MIP-1 beta) have been identified as ligands of this receptor. Studies of this receptor and its ligands suggested its role in regulation of monocyte chemotaxis and thymic cell apoptosis. More specifically, this receptor may contribute to the proper positioning of activated T cells within the antigenic challenge sites and specialized areas of lymphoid tissues. This gene is located at the chemokine receptor gene cluster region. [provided by RefSeq, Jul 2008]

CCR9 Gene

chemokine (C-C motif) receptor 9

The protein encoded by this gene is a member of the beta chemokine receptor family. It is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. Chemokines and their receptors are key regulators of the thymocytes migration and maturation in normal and inflammation conditions. The specific ligand of this receptor is CCL25. It has been found that this gene is differentially expressed by T lymphocytes of small intestine and colon, suggested a role in the thymocytes recruitment and development that may permit functional specialization of immune responses in different segment of the gastrointestinal tract. This gene is mapped to the chemokine receptor gene cluster region. Two alternatively spliced transcript variants have been described. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012]

OR7E29P Gene

olfactory receptor, family 7, subfamily E, member 29 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2U2P Gene

olfactory receptor, family 2, subfamily U, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTPRN2 Gene

protein tyrosine phosphatase, receptor type, N polypeptide 2

This gene encodes a protein with sequence similarity to receptor-like protein tyrosine phosphatases. However, tyrosine phosphatase activity has not been experimentally validated for this protein. Studies of the rat ortholog suggest that the encoded protein may instead function as a phosphatidylinositol phosphatase with the ability to dephosphorylate phosphatidylinositol 3-phosphate and phosphatidylinositol 4,5-diphosphate, and this function may be involved in the regulation of insulin secretion. This protein has been identified as an autoantigen in insulin-dependent diabetes mellitus. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015]

OR7E91P Gene

olfactory receptor, family 7, subfamily E, member 91 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SORL1 Gene

sortilin-related receptor, L(DLR class) A repeats containing

This gene encodes a mosaic protein that belongs to at least two families: the vacuolar protein sorting 10 (VPS10) domain-containing receptor family, and the low density lipoprotein receptor (LDLR) family. The encoded protein also contains fibronectin type III repeats and an epidermal growth factor repeat. The encoded protein is translated as a preproprotein and likely plays roles in endocytosis and sorting. There may be an association between expression of this locus and Alzheimer's Disease.[provided by RefSeq, Sep 2010]

LOC102724390 Gene

D(1B) dopamine receptor-like

NR0B2 Gene

nuclear receptor subfamily 0, group B, member 2

The protein encoded by this gene is an unusual orphan receptor that contains a putative ligand-binding domain but lacks a conventional DNA-binding domain. The gene product is a member of the nuclear hormone receptor family, a group of transcription factors regulated by small hydrophobic hormones, a subset of which do not have known ligands and are referred to as orphan nuclear receptors. The protein has been shown to interact with retinoid and thyroid hormone receptors, inhibiting their ligand-dependent transcriptional activation. In addition, interaction with estrogen receptors has been demonstrated, leading to inhibition of function. Studies suggest that the protein represses nuclear hormone receptor-mediated transactivation via two separate steps: competition with coactivators and the direct effects of its transcriptional repressor function. [provided by RefSeq, Jul 2008]

NR0B1 Gene

nuclear receptor subfamily 0, group B, member 1

This gene encodes a protein that contains a DNA-binding domain. The encoded protein acts as a dominant-negative regulator of transcription which is mediated by the retinoic acid receptor. This protein also functions as an anti-testis gene by acting antagonistically to Sry. Mutations in this gene result in both X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism. [provided by RefSeq, Jul 2008]

CNTFR Gene

ciliary neurotrophic factor receptor

This gene encodes a member of the type 1 cytokine receptor family. The encoded protein is the ligand-specific component of a tripartite receptor for ciliary neurotrophic factor, which plays a critical role in neuronal cell survival, differentiation and gene expression. Binding of ciliary neurotrophic factor to the encoded protein recruits the transmembrane components of the receptor, gp130 and leukemia inhibitory factor receptor, facilitating signal transduction. Single nucleotide polymorphisms in this gene may be associated with variations in muscle strength, as well as early onset of eating disorders. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, May 2011]

TACR3 Gene

tachykinin receptor 3

This gene belongs to a family of genes that function as receptors for tachykinins. Receptor affinities are specified by variations in the 5'-end of the sequence. The receptors belonging to this family are characterized by interactions with G proteins and 7 hydrophobic transmembrane regions. This gene encodes the receptor for the tachykinin neurokinin 3, also referred to as neurokinin B. [provided by RefSeq, Jul 2008]

TACR2 Gene

tachykinin receptor 2

This gene belongs to a family of genes that function as receptors for tachykinins. Receptor affinities are specified by variations in the 5'-end of the sequence. The receptors belonging to this family are characterized by interactions with G proteins and 7 hydrophobic transmembrane regions. This gene encodes the receptor for the tachykinin neuropeptide substance K, also referred to as neurokinin A. [provided by RefSeq, Jul 2008]

TACR1 Gene

tachykinin receptor 1

This gene belongs to a gene family of tachykinin receptors. These tachykinin receptors are characterized by interactions with G proteins and contain seven hydrophobic transmembrane regions. This gene encodes the receptor for the tachykinin substance P, also referred to as neurokinin 1. The encoded protein is also involved in the mediation of phosphatidylinositol metabolism of substance P. [provided by RefSeq, Sep 2008]

TAS2R2P Gene

taste receptor, type 2, member 2, pseudogene

OR10K2 Gene

olfactory receptor, family 10, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10K1 Gene

olfactory receptor, family 10, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KIR3DP1 Gene

killer cell immunoglobulin-like receptor, three domains, pseudogene 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. This gene is considered to be a pseudogene based on the absence of transcription and it lacks several functional domains compared to other killer cell immunoglobulin-like receptors. A rare haplotype, the result of a recombinantion event, has two copies of this gene, one of which may encode a secreted protein. (PMID: 15580659)[provided by RefSeq, Mar 2011]

C1DP1 Gene

C1D nuclear receptor corepressor pseudogene 1

C1DP3 Gene

C1D nuclear receptor corepressor pseudogene 3

LOC100421898 Gene

olfactory receptor, family 2, subfamily A, member 5 pseudogene

OR4H12P Gene

olfactory receptor, family 4, subfamily H, member 12 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A18P Gene

olfactory receptor, family 4, subfamily A, member 18 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A4P Gene

olfactory receptor, family 4, subfamily A, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6S1 Gene

olfactory receptor, family 6, subfamily S, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8I1P Gene

olfactory receptor, family 8, subfamily I, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SCART1 Gene

scavenger receptor protein family member

OGFRP1 Gene

opioid growth factor receptor pseudogene 1

OR7E89P Gene

olfactory receptor, family 7, subfamily E, member 89 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

SRPR Gene

signal recognition particle receptor (docking protein)

The gene encodes a subunit of the endoplasmic reticulum signal recognition particle receptor that, in conjunction with the signal recognition particle, is involved in the targeting and translocation of signal sequence tagged secretory and membrane proteins across the endoplasmic reticulum. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2010]

PTPN20CP Gene

protein tyrosine phosphatase, non-receptor type 20C, pseudogene

IL1R2 Gene

interleukin 1 receptor, type II

The protein encoded by this gene is a cytokine receptor that belongs to the interleukin 1 receptor family. This protein binds interleukin alpha (IL1A), interleukin beta (IL1B), and interleukin 1 receptor, type I(IL1R1/IL1RA), and acts as a decoy receptor that inhibits the activity of its ligands. Interleukin 4 (IL4) is reported to antagonize the activity of interleukin 1 by inducing the expression and release of this cytokine. This gene and three other genes form a cytokine receptor gene cluster on chromosome 2q12. Alternative splicing results in multiple transcript variants and protein isoforms. Alternative splicing produces both membrane-bound and soluble proteins. A soluble protein is also produced by proteolytic cleavage. [provided by RefSeq, May 2012]

IL1R1 Gene

interleukin 1 receptor, type I

This gene encodes a cytokine receptor that belongs to the interleukin-1 receptor family. The encoded protein is a receptor for interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist. It is an important mediator involved in many cytokine-induced immune and inflammatory responses. This gene is located in a cluster of related cytokine receptor genes on chromosome 2q12. [provided by RefSeq, Dec 2013]

ITPR2 Gene

inositol 1,4,5-trisphosphate receptor, type 2

The protein encoded by this gene belongs to the inositol 1,4,5-triphosphate receptor family, whose members are second messenger intracellular calcium release channels. These proteins mediate a rise in cytoplasmic calcium in response to receptor activated production of inositol triphosphate. Inositol triphosphate receptor-mediated signaling is involved in many processes including cell migration, cell division, smooth muscle contraction, and neuronal signaling. This protein is a type 2 receptor that consists of a cytoplasmic amino-terminus that binds inositol triphosphate, six membrane-spanning helices that contribute to the ion pore, and a short cytoplasmic carboxy-terminus. A mutation in this gene has been associated with anhidrosis, suggesting that intracellular calcium release mediated by this protein is required for eccrine sweat production. [provided by RefSeq, Apr 2015]

ITPR3 Gene

inositol 1,4,5-trisphosphate receptor, type 3

This gene encodes a receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. The receptor contains a calcium channel at the C-terminus and the ligand-binding site at the N-terminus. Knockout studies in mice suggest that type 2 and type 3 inositol 1,4,5-trisphosphate receptors play a key role in exocrine secretion underlying energy metabolism and growth. [provided by RefSeq, Aug 2010]

ITPR1 Gene

inositol 1,4,5-trisphosphate receptor, type 1

This gene encodes an intracellular receptor for inositol 1,4,5-trisphosphate. Upon stimulation by inositol 1,4,5-trisphosphate, this receptor mediates calcium release from the endoplasmic reticulum. Mutations in this gene cause spinocerebellar ataxia type 15, a disease associated with an heterogeneous group of cerebellar disorders. Multiple transcript variants have been identified for this gene. [provided by RefSeq, Nov 2009]

IL1RN Gene

interleukin 1 receptor antagonist

The protein encoded by this gene is a member of the interleukin 1 cytokine family. This protein inhibits the activities of interleukin 1, alpha (IL1A) and interleukin 1, beta (IL1B), and modulates a variety of interleukin 1 related immune and inflammatory responses. This gene and five other closely related cytokine genes form a gene cluster spanning approximately 400 kb on chromosome 2. A polymorphism of this gene is reported to be associated with increased risk of osteoporotic fractures and gastric cancer. Four alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]

PGRMC2 Gene

progesterone receptor membrane component 2

PGRMC1 Gene

progesterone receptor membrane component 1

This gene encodes a putative membrane-associated progesterone steroid receptor. The protein is expressed predominantly in the liver and kidney. [provided by RefSeq, Mar 2010]

OR4A43P Gene

olfactory receptor, family 4, subfamily A, member 43 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TARM1 Gene

T cell-interacting, activating receptor on myeloid cells 1

IGF1R Gene

insulin-like growth factor 1 receptor

This receptor binds insulin-like growth factor with a high affinity. It has tyrosine kinase activity. The insulin-like growth factor I receptor plays a critical role in transformation events. Cleavage of the precursor generates alpha and beta subunits. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Alternatively spliced transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, May 2014]

IL7R Gene

interleukin 7 receptor

The protein encoded by this gene is a receptor for interleukine 7 (IL7). The function of this receptor requires the interleukin 2 receptor, gamma chain (IL2RG), which is a common gamma chain shared by the receptors of various cytokines, including interleukine 2, 4, 7, 9, and 15. This protein has been shown to play a critical role in the V(D)J recombination during lymphocyte development. This protein is also found to control the accessibility of the TCR gamma locus by STAT5 and histone acetylation. Knockout studies in mice suggested that blocking apoptosis is an essential function of this protein during differentiation and activation of T lymphocytes. The functional defects in this protein may be associated with the pathogenesis of the severe combined immunodeficiency (SCID). Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, May 2014]

OR51A1P Gene

olfactory receptor, family 51, subfamily A, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC105375252 Gene

serine-threonine kinase receptor-associated protein pseudogene

ITPRIP Gene

inositol 1,4,5-trisphosphate receptor interacting protein

This gene encodes a membrane-associated protein that binds the inositol 1,4,5-trisphosphate receptor (ITPR). The encoded protein enhances the sensitivity of ITPR to intracellular calcium signaling. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2012]

LOC100421910 Gene

olfactory receptor, family 5, subfamily R, member 1 pseudogene

LOC100421911 Gene

olfactory receptor, family 1, subfamily M, member 1 pseudogene

LOC100421912 Gene

olfactory receptor, family 1, subfamily N, member 1 pseudogene

LOC100421913 Gene

olfactory receptor, family 2, subfamily B, member 2 pseudogene

TRBV9 Gene

T cell receptor beta variable 9

TRBV2 Gene

T cell receptor beta variable 2

TRBV1 Gene

T cell receptor beta variable 1 (pseudogene)

ADIPOR1P1 Gene

adiponectin receptor 1 pseudogene 1

ADIPOR1P2 Gene

adiponectin receptor 1 pseudogene 2

VN1R108P Gene

vomeronasal 1 receptor 108 pseudogene

LOC100419170 Gene

toll-like receptor 2 pseudogene

TRIP10 Gene

thyroid hormone receptor interactor 10

TRIP11 Gene

thyroid hormone receptor interactor 11

This gene was identified based on the interaction of its protein product with thyroid hormone receptor beta. This protein is associated with the Golgi apparatus. The N-terminal region of the protein binds Golgi membranes and the C-terminal region binds the minus ends of microtubules; thus, the protein is thought to play a role in assembly and maintenance of the Golgi ribbon structure around the centrosome. Mutations in this gene cause achondrogenesis type IA.[provided by RefSeq, Mar 2010]

TRIP12 Gene

thyroid hormone receptor interactor 12

TRIP13 Gene

thyroid hormone receptor interactor 13

This gene encodes a protein that interacts with thyroid hormone receptors, also known as hormone-dependent transcription factors. The gene product interacts specifically with the ligand binding domain. This gene is one of several that may play a role in early-stage non-small cell lung cancer. [provided by RefSeq, Oct 2009]

TRBVC Gene

T cell receptor beta variable C

TRBVB Gene

T cell receptor beta variable B (pseudogene)

TRBVA Gene

T cell receptor beta variable A (pseudogene)

OR2D2 Gene

olfactory receptor, family 2, subfamily D, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2D3 Gene

olfactory receptor, family 2, subfamily D, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TAS1R1 Gene

taste receptor, type 1, member 1

The protein encoded by this gene is a G protein-coupled receptor and is a component of the heterodimeric amino acid taste receptor T1R1+3. The T1R1+3 receptor responds to L-amino acids but not to D-enantiomers or other compounds. Most amino acids that are perceived as sweet activate T1R1+3, and this activation is strictly dependent on an intact T1R1+3 heterodimer. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jun 2010]

TAS1R3 Gene

taste receptor, type 1, member 3

The TAS1R3 gene encodes the human homolog of mouse Sac, a major determinant of differences between sweet-sensitive and -insensitive mouse strains in their responsiveness to sucrose, saccharine, and other sweeteners (Max et al., 2001 [PubMed 11326277]).[supplied by OMIM, Jan 2010]

TAS1R2 Gene

taste receptor, type 1, member 2

LOC100420878 Gene

GABA(A) receptor-associated protein pseudogene

OR7E100P Gene

olfactory receptor, family 7, subfamily E, member 100 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN2R15P Gene

vomeronasal 2 receptor 15 pseudogene

VN1R63P Gene

vomeronasal 1 receptor 63 pseudogene

OR51F5P Gene

olfactory receptor, family 51, subfamily F, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AG1 Gene

olfactory receptor, family 10, subfamily AG, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52M1 Gene

olfactory receptor, family 52, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR135 Gene

G protein-coupled receptor 135

GPR137 Gene

G protein-coupled receptor 137

GPR132 Gene

G protein-coupled receptor 132

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) superfamily. The receptors are seven-pass transmembrane proteins that respond to extracellular cues and activate intracellular signal transduction pathways. This protein was reported to be a receptor for lysophosphatidylcholine action, but PubMedID: 15653487 retracts this finding and instead suggests this protein to be an effector of lysophosphatidylcholine action. This protein may have proton-sensing activity and may be a receptor for oxidized free fatty acids. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2013]

GPR139 Gene

G protein-coupled receptor 139

LOC344382 Gene

serine/threonine kinase receptor associated protein pseudogene

OR56A7P Gene

olfactory receptor, family 56, subfamily A, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR88 Gene

G protein-coupled receptor 88

GPR82 Gene

G protein-coupled receptor 82

The protein encoded by this gene is an orphan G protein-coupled receptor of unknown function. The encoded protein is a member of a family of proteins that contain seven transmembrane domains and transduce extracellular signals through heterotrimeric G proteins. [provided by RefSeq, Sep 2011]

GPR83 Gene

G protein-coupled receptor 83

GPR84 Gene

G protein-coupled receptor 84

GPR85 Gene

G protein-coupled receptor 85

Members of the G protein-coupled receptor (GPCR) family, such as GPR85, have a similar structure characterized by 7 transmembrane domains. Activation of GPCRs by extracellular stimuli, such as neurotransmitters, hormones, or light, induces an intracellular signaling cascade mediated by heterotrimeric GTP-binding proteins, or G proteins (Matsumoto et al., 2000 [PubMed 10833454]).[supplied by OMIM, Aug 2008]

GPR87 Gene

G protein-coupled receptor 87

This gene encodes a G protein-coupled receptor and is located in a cluster of G protein-couple receptor genes on chromosome 3. The encoded protein has been shown to be overexpressed in lung squamous cell carcinoma (PMID:18057535) and regulated by p53 (PMID:19602589). [provided by RefSeq, Nov 2011]

OR13H1 Gene

olfactory receptor, family 13, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L13 Gene

olfactory receptor, family 2, subfamily L, member 13

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E162P Gene

olfactory receptor, family 7, subfamily E, member 162 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

BCAP31P2 Gene

B-cell receptor-associated protein 31 pseudogene 2

OR2L1P Gene

olfactory receptor, family 2, subfamily L, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LTK Gene

leukocyte receptor tyrosine kinase

The protein encoded by this gene is a member of the ros/insulin receptor family of tyrosine kinases. Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2008]

LOC100422165 Gene

olfactory receptor, family 4, subfamily A, member 15 pseudogene

OR7E33P Gene

olfactory receptor, family 7, subfamily E, member 33 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100422162 Gene

olfactory receptor, family 52, subfamily E, member 4 pseudogene

LOC100422168 Gene

olfactory receptor, family 4, subfamily C, member 46 pseudogene

OR8A2P Gene

olfactory receptor, family 8, subfamily A, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10C1 Gene

olfactory receptor, family 10, subfamily C, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

BMPR2 Gene

bone morphogenetic protein receptor, type II (serine/threonine kinase)

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of two different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension, both familial and fenfluramine-associated, and with pulmonary venoocclusive disease. [provided by RefSeq, Jul 2008]

OR5F2P Gene

olfactory receptor, family 5, subfamily F, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100271717 Gene

natural cytotoxicity triggering receptor 1 pseudogene

KDR Gene

kinase insert domain receptor

Vascular endothelial growth factor (VEGF) is a major growth factor for endothelial cells. This gene encodes one of the two receptors of the VEGF. This receptor, known as kinase insert domain receptor, is a type III receptor tyrosine kinase. It functions as the main mediator of VEGF-induced endothelial proliferation, survival, migration, tubular morphogenesis and sprouting. The signalling and trafficking of this receptor are regulated by multiple factors, including Rab GTPase, P2Y purine nucleotide receptor, integrin alphaVbeta3, T-cell protein tyrosine phosphatase, etc.. Mutations of this gene are implicated in infantile capillary hemangiomas. [provided by RefSeq, May 2009]

LOC100418642 Gene

olfactory receptor, family 2, subfamily B, member 6 pseudogene

OR4A10P Gene

olfactory receptor, family 4, subfamily A, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100418648 Gene

olfactory receptor, family 2, subfamily Y, member 1 pseudogene

TRAV34 Gene

T cell receptor alpha variable 34

TRAV35 Gene

T cell receptor alpha variable 35

TRAV37 Gene

T cell receptor alpha variable 37 (pseudogene)

TRAV30 Gene

T cell receptor alpha variable 30

TRAV32 Gene

T cell receptor alpha variable 32 (pseudogene)

TRAV33 Gene

T cell receptor alpha variable 33 (pseudogene)

OR4F13P Gene

olfactory receptor, family 4, subfamily F, member 13 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV39 Gene

T cell receptor alpha variable 39

MRC2 Gene

mannose receptor, C type 2

This gene encodes a member of the mannose receptor family of proteins that contain a fibronectin type II domain and multiple C-type lectin-like domains. The encoded protein plays a role in extracellular matrix remodeling by mediating the internalization and lysosomal degradation of collagen ligands. Expression of this gene may play a role in the tumorigenesis and metastasis of several malignancies including breast cancer, gliomas and metastatic bone disease. [provided by RefSeq, Feb 2012]

VN1R44P Gene

vomeronasal 1 receptor 44 pseudogene

OR5AK1P Gene

olfactory receptor, family 5, subfamily AK, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51B8P Gene

olfactory receptor, family 51, subfamily B, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PILRA Gene

paired immunoglobin-like type 2 receptor alpha

Cell signaling pathways rely on a dynamic interaction between activating and inhibiting processes. SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways. Two types of inhibitory receptor superfamily members are immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors and their non-ITIM-bearing, activating counterparts. Control of cell signaling via SHP-1 is thought to occur through a balance between PILRalpha-mediated inhibition and PILRbeta-mediated activation. These paired immunoglobulin-like receptor genes are located in a tandem head-to-tail orientation on chromosome 7. This particular gene encodes the ITIM-bearing member of the receptor pair, which functions in the inhibitory role. Alternative splicing has been observed at this locus and three variants, each encoding a distinct isoform, are described. [provided by RefSeq, Jul 2008]

PILRB Gene

paired immunoglobin-like type 2 receptor beta

The paired immunoglobin-like type 2 receptors consist of highly related activating and inhibitory receptors that are involved in the regulation of many aspects of the immune system. The paired immunoglobulin-like receptor genes are located in a tandem head-to-tail orientation on chromosome 7. This gene encodes the activating member of the receptor pair and contains a truncated cytoplasmic tail relative to its inhibitory counterpart (PILRA), that has a long cytoplasmic tail with immunoreceptor tyrosine-based inhibitory (ITIM) motifs. This gene is thought to have arisen from a duplication of the inhibitory PILRA gene and evolved to acquire its activating function. [provided by RefSeq, Jun 2013]

LOC105369233 Gene

macrophage mannose receptor 1-like

MRAP2 Gene

melanocortin 2 receptor accessory protein 2

OR5AQ1P Gene

olfactory receptor, family 5, subfamily AQ, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10X1 Gene

olfactory receptor, family 10, subfamily X, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R87P Gene

vomeronasal 1 receptor 87 pseudogene

TRPA1 Gene

transient receptor potential cation channel, subfamily A, member 1

The structure of the protein encoded by this gene is highly related to both the protein ankyrin and transmembrane proteins. The specific function of this protein has not yet been determined; however, studies indicate the function may involve a role in signal transduction and growth control. [provided by RefSeq, Jul 2008]

OR51AB1P Gene

olfactory receptor, family 51, subfamily AB, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4R2P Gene

olfactory receptor, family 4, subfamily R, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7D2 Gene

olfactory receptor, family 7, subfamily D, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7D4 Gene

olfactory receptor, family 7, subfamily D, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9N1P Gene

olfactory receptor, family 9, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R12P Gene

vomeronasal 1 receptor 12 pseudogene

OR4A3P Gene

olfactory receptor, family 4, subfamily A, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E10P Gene

olfactory receptor, family 7, subfamily E, member 10 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

HTR3D Gene

5-hydroxytryptamine (serotonin) receptor 3D, ionotropic

The protein encoded this gene belongs to the ligand-gated ion channel receptor superfamily. This gene encodes subunit D of the type 3 receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a mitogen and a hormone. This hormone has been linked to neuropsychiatric disorders, including anxiety, depression, and migraine. Serotonin receptors causes fast and depolarizing responses in neurons following activation. The genes encoding subunits C, D and E of this type 3 receptor form a cluster on chromosome 3. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2009]

HTR3E Gene

5-hydroxytryptamine (serotonin) receptor 3E, ionotropic

This locus encodes a 5-hydroxytryptamine (serotonin) receptor subunit. The encoded protein, subunit E, may play a role in neurotransmission in myenteric neurons. Genes encoding subunits C, D and E form a cluster on chromosome 3. Alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Feb 2012]

HTR3B Gene

5-hydroxytryptamine (serotonin) receptor 3B, ionotropic

The product of this gene belongs to the ligand-gated ion channel receptor superfamily. This gene encodes subunit B of the type 3 receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor causes fast, depolarizing responses in neurons after activation. It is not functional as a homomeric complex, but a pentaheteromeric complex with subunit A (HTR3A) displays the full functional features of this receptor. [provided by RefSeq, Aug 2011]

HTR3C Gene

5-hydroxytryptamine (serotonin) receptor 3C, ionotropic

The product of this gene belongs to the ligand-gated ion channel receptor superfamily. This gene encodes subunit C of the type 3 receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor causes fast, depolarizing responses in neurons after activation. Genes encoding subunits C, D and E form a cluster on chromosome 3. [provided by RefSeq, Jul 2008]

HTR3A Gene

5-hydroxytryptamine (serotonin) receptor 3A, ionotropic

The product of this gene belongs to the ligand-gated ion channel receptor superfamily. This gene encodes subunit A of the type 3 receptor for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor causes fast, depolarizing responses in neurons after activation. It appears that the heteromeric combination of A and B subunits is necessary to provide the full functional features of this receptor, since either subunit alone results in receptors with very low conductance and response amplitude. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Jul 2008]

FCAMR Gene

Fc receptor, IgA, IgM, high affinity

OR2F2 Gene

olfactory receptor, family 2, subfamily F, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

ADORA2A Gene

adenosine A2a receptor

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) superfamily, which is subdivided into classes and subtypes. The receptors are seven-pass transmembrane proteins that respond to extracellular cues and activate intracellular signal transduction pathways. This protein, an adenosine receptor of A2A subtype, uses adenosine as the preferred endogenous agonist and preferentially interacts with the G(s) and G(olf) family of G proteins to increase intracellular cAMP levels. It plays an important role in many biological functions, such as cardiac rhythm and circulation, cerebral and renal blood flow, immune function, pain regulation, and sleep. It has been implicated in pathophysiological conditions such as inflammatory diseases and neurodegenerative disorders. Alternative splicing results in multiple transcript variants. A read-through transcript composed of the upstream SPECC1L (sperm antigen with calponin homology and coiled-coil domains 1-like) and ADORA2A (adenosine A2a receptor) gene sequence has been identified, but it is thought to be non-coding. [provided by RefSeq, Jun 2013]

ADORA2B Gene

adenosine A2b receptor

This gene encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. This protein also interacts with netrin-1, which is involved in axon elongation. The gene is located near the Smith-Magenis syndrome region on chromosome 17. [provided by RefSeq, Jul 2008]

LOC100422126 Gene

olfactory receptor, family 51, subfamily I, member 2 pseudogene

KIR2DP1 Gene

killer cell immunoglobulin-like receptor, two domains, pseudogene 1

OR4F7P Gene

olfactory receptor, family 4, subfamily F, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IL6STP1 Gene

interleukin 6 signal transducer (gp130, oncostatin M receptor) pseudogene 1

LOC100421999 Gene

olfactory receptor, family 5, subfamily J, member 2 pseudogene

LOC100421991 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421992 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421994 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421995 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421996 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

LOC100421997 Gene

olfactory receptor, family 4, subfamily A, member 5 pseudogene

OR8G5 Gene

olfactory receptor, family 8, subfamily G, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR8G1 Gene

olfactory receptor, family 8, subfamily G, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. This family member represents a polymorphic pseudogene, whereby some individuals have a functional allele that encodes a full-length protein, while others have a non-functional allele due to the presence of an early stop codon and a 3' end deletion. [provided by RefSeq, Feb 2014]

OR8G2 Gene

olfactory receptor, family 8, subfamily G, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10D4P Gene

olfactory receptor, family 10, subfamily D, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR7E108P Gene

olfactory receptor, family 7, subfamily E, member 108 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51M1 Gene

olfactory receptor, family 51, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR37L1 Gene

G protein-coupled receptor 37 like 1

CMKLR1 Gene

chemerin chemokine-like receptor 1

OR52E6 Gene

olfactory receptor, family 52, subfamily E, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52E5 Gene

olfactory receptor, family 52, subfamily E, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52E4 Gene

olfactory receptor, family 52, subfamily E, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52E2 Gene

olfactory receptor, family 52, subfamily E, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52E1 Gene

olfactory receptor, family 52, subfamily E, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421962 Gene

olfactory receptor, family 5, subfamily M, member 8 pseudogene

TRBV29OR9-2 Gene

T cell receptor beta variable 29/OR9-2 (non-functional)

OR5M8 Gene

olfactory receptor, family 5, subfamily M, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M9 Gene

olfactory receptor, family 5, subfamily M, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M3 Gene

olfactory receptor, family 5, subfamily M, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5M1 Gene

olfactory receptor, family 5, subfamily M, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCMR Gene

Fc fragment of IgM receptor

Fc receptors specifically bind to the Fc region of immunoglobulins (Igs) to mediate the unique functions of each Ig class. FAIM3 encodes an Fc receptor for IgM (see MIM 147020) (Kubagawa et al., 2009 [PubMed 19858324]; Shima et al., 2010 [PubMed 20042454]).[supplied by OMIM, Jul 2010]

OR7A11P Gene

olfactory receptor, family 7, subfamily A, member 11 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10Y1P Gene

olfactory receptor, family 10, subfamily Y, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A8 Gene

olfactory receptor, family 4, subfamily A, member 8 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR4A5 Gene

olfactory receptor, family 4, subfamily A, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LIFR Gene

leukemia inhibitory factor receptor alpha

This gene encodes a protein that belongs to the type I cytokine receptor family. This protein combines with a high-affinity converter subunit, gp130, to form a receptor complex that mediates the action of the leukemia inhibitory factor, a polyfunctional cytokine that is involved in cellular differentiation, proliferation and survival in the adult and the embryo. Mutations in this gene cause Schwartz-Jampel syndrome type 2, a disease belonging to the group of the bent-bone dysplasias. A translocation that involves the promoter of this gene, t(5;8)(p13;q12) with the pleiomorphic adenoma gene 1, is associated with salivary gland pleiomorphic adenoma, a common type of benign epithelial tumor of the salivary gland. Multiple splice variants encoding the same protein have been found for this gene. [provided by RefSeq, Jul 2008]

BDKRB1 Gene

bradykinin receptor B1

Bradykinin, a 9 aa peptide, is generated in pathophysiologic conditions such as inflammation, trauma, burns, shock, and allergy. Two types of G-protein coupled receptors have been found which bind bradykinin and mediate responses to these pathophysiologic conditions. The protein encoded by this gene is one of these receptors and is synthesized de novo following tissue injury. Receptor binding leads to an increase in the cytosolic calcium ion concentration, ultimately resulting in chronic and acute inflammatory responses. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011]

BDKRB2 Gene

bradykinin receptor B2

This gene encodes a receptor for bradykinin. The 9 aa bradykinin peptide elicits many responses including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. This receptor associates with G proteins that stimulate a phosphatidylinositol-calcium second messenger system. Alternate start codons result in two isoforms of the protein. [provided by RefSeq, Jul 2008]

OR52K2 Gene

olfactory receptor, family 52, subfamily K, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2L9P Gene

olfactory receptor, family 2, subfamily L, member 9 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PIRT Gene

phosphoinositide-interacting regulator of transient receptor potential channels

OR1C1 Gene

olfactory receptor, family 1, subfamily C, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR11H12 Gene

olfactory receptor, family 11, subfamily H, member 12

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRBV24OR9-2 Gene

T cell receptor beta variable 24/OR9-2 (pseudogene)

OR1D3P Gene

olfactory receptor, family 1, subfamily D, member 3 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR3A4P Gene

olfactory receptor, family 3, subfamily A, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. This olfactory receptor gene is transcribed and contains an intact ORF, but it is predicted to be a pseudogene due to a poorly conserved 7-transmembrane domain structure. [provided by RefSeq, Sep 2008]

VN1R7P Gene

vomeronasal 1 receptor 7 pseudogene

VN2R21P Gene

vomeronasal 2 receptor 21 pseudogene

VN1R57P Gene

vomeronasal 1 receptor 57 pseudogene

IFNGR1 Gene

interferon gamma receptor 1

This gene (IFNGR1) encodes the ligand-binding chain (alpha) of the gamma interferon receptor. Human interferon-gamma receptor is a heterodimer of IFNGR1 and IFNGR2. A genetic variation in IFNGR1 is associated with susceptibility to Helicobacter pylori infection. In addition, defects in IFNGR1 are a cause of mendelian susceptibility to mycobacterial disease, also known as familial disseminated atypical mycobacterial infection. [provided by RefSeq, Jul 2008]

IFNGR2 Gene

interferon gamma receptor 2 (interferon gamma transducer 1)

This gene (IFNGR2) encodes the non-ligand-binding beta chain of the gamma interferon receptor. Human interferon-gamma receptor is a heterodimer of IFNGR1 and IFNGR2. Defects in IFNGR2 are a cause of mendelian susceptibility to mycobacterial disease (MSMD), also known as familial disseminated atypical mycobacterial infection. MSMD is a genetically heterogeneous disease with autosomal recessive, autosomal dominant or X-linked inheritance. [provided by RefSeq, Jul 2008]

VN1R100P Gene

vomeronasal 1 receptor 100 pseudogene

TRGV11 Gene

T cell receptor gamma variable 11 (non-functional)

OR2S1P Gene

olfactory receptor, family 2, subfamily S, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC642262 Gene

nuclear receptor coactivator 4 pseudogene

OR2AF1P Gene

olfactory receptor, family 2, subfamily AF, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52P1P Gene

olfactory receptor, family 52, subfamily P, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

NR1I4 Gene

nuclear receptor subfamily 1, group I, member 4

FOLR1P1 Gene

folate receptor 1 (adult) pseudogene 1

OR11J5P Gene

olfactory receptor, family 11, subfamily J, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV12-1 Gene

T cell receptor alpha variable 12-1

TRAV12-3 Gene

T cell receptor alpha variable 12-3

TRAV12-2 Gene

T cell receptor alpha variable 12-2

ADORA2BP1 Gene

adenosine A2b receptor pseudogene 1

VN2R7P Gene

vomeronasal 2 receptor 7 pseudogene

LOC100421173 Gene

thyroid hormone receptor interactor 11 pseudogene

LOC100421171 Gene

thyroid hormone receptor interactor 11 pseudogene

LOC100421174 Gene

thyroid hormone receptor interactor 13 pseudogene

OR52R1 Gene

olfactory receptor, family 52, subfamily R, member 1 (gene/pseudogene)

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

F11R Gene

F11 receptor

Tight junctions represent one mode of cell-to-cell adhesion in epithelial or endothelial cell sheets, forming continuous seals around cells and serving as a physical barrier to prevent solutes and water from passing freely through the paracellular space. The protein encoded by this immunoglobulin superfamily gene member is an important regulator of tight junction assembly in epithelia. In addition, the encoded protein can act as (1) a receptor for reovirus, (2) a ligand for the integrin LFA1, involved in leukocyte transmigration, and (3) a platelet receptor. Multiple 5' alternatively spliced variants, encoding the same protein, have been identified but their biological validity has not been established. [provided by RefSeq, Jul 2008]

GRID1 Gene

glutamate receptor, ionotropic, delta 1

This gene encodes a subunit of glutamate receptor channels. These channels mediate most of the fast excitatory synaptic transmission in the central nervous system and play key roles in synaptic plasticity.[provided by RefSeq, Jan 2009]

GRID2 Gene

glutamate receptor, ionotropic, delta 2

The protein encoded by this gene is a member of the family of ionotropic glutamate receptors which are the predominant excitatory neurotransmitter receptors in the mammalian brain. The encoded protein is a multi-pass membrane protein that is expressed selectively in cerebellar Purkinje cells. A point mutation in the mouse ortholog, associated with the phenotype named 'lurcher', in the heterozygous state leads to ataxia resulting from selective, cell-autonomous apoptosis of cerebellar Purkinje cells during postnatal development. Mice homozygous for this mutation die shortly after birth from massive loss of mid- and hindbrain neurons during late embryogenesis. This protein also plays a role in synapse organization between parallel fibers and Purkinje cells. Alternate splicing results in multiple transcript variants encoding distinct isoforms. Mutations in this gene cause cerebellar ataxia in humans. [provided by RefSeq, Apr 2014]

OR4C49P Gene

olfactory receptor, family 4, subfamily C, member 49 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10P1 Gene

olfactory receptor, family 10, subfamily P, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GIPR Gene

gastric inhibitory polypeptide receptor

This gene encodes a G-protein coupled receptor for gastric inhibitory polypeptide (GIP), which was originally identified as an activity in gut extracts that inhibited gastric acid secretion and gastrin release, but subsequently was demonstrated to stimulate insulin release in the presence of elevated glucose. Mice lacking this gene exhibit higher blood glucose levels with impaired initial insulin response after oral glucose load. Defect in this gene thus may contribute to the pathogenesis of diabetes. [provided by RefSeq, Oct 2011]

OR9I2P Gene

olfactory receptor, family 9, subfamily I, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51K1P Gene

olfactory receptor, family 51, subfamily K, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC100421822 Gene

protein tyrosine phosphatase, non-receptor type 11 pseudogene

OR6F1 Gene

olfactory receptor, family 6, subfamily F, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6C68 Gene

olfactory receptor, family 6, subfamily C, member 68

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a seven-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Mar 2014]

OR7E18P Gene

olfactory receptor, family 7, subfamily E, member 18 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

CNIH1 Gene

cornichon family AMPA receptor auxiliary protein 1

CNIH3 Gene

cornichon family AMPA receptor auxiliary protein 3

CNIH2 Gene

cornichon family AMPA receptor auxiliary protein 2

The protein encoded by this gene is an auxiliary subunit of the ionotropic glutamate receptor of the AMPA subtype. AMPA receptors mediate fast synaptic neurotransmission in the central nervous system. This protein has been reported to interact with the Type I AMPA receptor regulatory protein isoform gamma-8 to control assembly of hippocampal AMPA receptor complexes, thereby modulating receptor gating and pharmacology. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]

CNIH4 Gene

cornichon family AMPA receptor auxiliary protein 4

OR4N1P Gene

olfactory receptor, family 4, subfamily N, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10AB1P Gene

olfactory receptor, family 10, subfamily AB, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9G4 Gene

olfactory receptor, family 9, subfamily G, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9G1 Gene

olfactory receptor, family 9, subfamily G, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR9G9 Gene

olfactory receptor, family 9, subfamily G, member 9

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5G4P Gene

olfactory receptor, family 5, subfamily G, member 4 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

LOC102724064 Gene

proline-rich receptor-like protein kinase PERK13

MALRD1 Gene

MAM and LDL receptor class A domain containing 1

LOC100422139 Gene

olfactory receptor, family 5, subfamily B, member 12 pseudogene

LOC100422138 Gene

olfactory receptor, family 4, subfamily C, member 12 pseudogene

LOC100422131 Gene

olfactory receptor, family 52, subfamily N, member 1 pseudogene

OR2T8 Gene

olfactory receptor, family 2, subfamily T, member 8

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T6 Gene

olfactory receptor, family 2, subfamily T, member 6

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T7 Gene

olfactory receptor, family 2, subfamily T, member 7

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T4 Gene

olfactory receptor, family 2, subfamily T, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T5 Gene

olfactory receptor, family 2, subfamily T, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T2 Gene

olfactory receptor, family 2, subfamily T, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2T1 Gene

olfactory receptor, family 2, subfamily T, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

TRAV13-1 Gene

T cell receptor alpha variable 13-1

TRAV13-2 Gene

T cell receptor alpha variable 13-2

OR51E1 Gene

olfactory receptor, family 51, subfamily E, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR51E2 Gene

olfactory receptor, family 51, subfamily E, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

RIC3 Gene

RIC3 acetylcholine receptor chaperone

The protein encoded by this gene promotes functional expression of homomeric nicotinic acetylcholine receptors at the cell surface. It enhances currents generated by these receptors by expediting receptor transport to the cell surface and by increasing receptor number. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

FFAR1 Gene

free fatty acid receptor 1

This gene encodes a member of the GP40 family of G protein-coupled receptors that are clustered together on chromosome 19. The encoded protein is a receptor for medium and long chain free fatty acids and may be involved in the metabolic regulation of insulin secretion. Polymorphisms in this gene may be associated with type 2 diabetes. [provided by RefSeq, Apr 2009]

GLP1R Gene

glucagon-like peptide 1 receptor

OR2W2P Gene

olfactory receptor, family 2, subfamily W, member 2 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

KIR2DL3 Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 3

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DL2 Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DL1 Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 1

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. [provided by RefSeq, Jul 2008]

KIR2DL4 Gene

killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4

Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2008]

TRBV29-1 Gene

T cell receptor beta variable 29-1

TRAJ4 Gene

T cell receptor alpha joining 4

TRAJ5 Gene

T cell receptor alpha joining 5

TRAJ6 Gene

T cell receptor alpha joining 6

TRAJ7 Gene

T cell receptor alpha joining 7

TRAJ1 Gene

T cell receptor alpha joining 1 (non-functional)

TRAJ2 Gene

T cell receptor alpha joining 2 (non-functional)

TRAJ3 Gene

T cell receptor alpha joining 3

TRAJ8 Gene

T cell receptor alpha joining 8

TRAJ9 Gene

T cell receptor alpha joining 9

OR7A19P Gene

olfactory receptor, family 7, subfamily A, member 19 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R85P Gene

vomeronasal 1 receptor 85 pseudogene

ADGRG7 Gene

adhesion G protein-coupled receptor G7

ADGRG6 Gene

adhesion G protein-coupled receptor G6

This gene, which is upregulated in human umbilical vein endothelial cells, encodes a G protein-coupled receptor. Variations in this gene can affect a person's stature. Multiple transcript variants encoding different proteins have been found for this gene. [provided by RefSeq, Mar 2009]

ADGRG5 Gene

adhesion G protein-coupled receptor G5

TRPC1 Gene

transient receptor potential cation channel, subfamily C, member 1

The protein encoded by this gene is a membrane protein that can form a non-selective channel permeable to calcium and other cations. The encoded protein appears to be induced to form channels by a receptor tyrosine kinase-activated phosphatidylinositol second messenger system and also by depletion of intracellular calcium stores. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2011]

ADGRG3 Gene

adhesion G protein-coupled receptor G3

ADGRG2 Gene

adhesion G protein-coupled receptor G2

This gene encodes a member of the G protein-coupled receptor family described as an epididymis-specific transmembrane protein. The encoded protein may be proteolytically processed as it contains a motif shown to be a protein scission motif in some members of this family (PMID: 11973329). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2011]

TRPC7 Gene

transient receptor potential cation channel, subfamily C, member 7

TRPC5 Gene

transient receptor potential cation channel, subfamily C, member 5

This gene belongs to the transient receptor family. It encodes one of the seven mammalian TRPC (transient receptor potential channel) proteins. The encoded protein is a multi-pass membrane protein and is thought to form a receptor-activated non-selective calcium permeant cation channel. The protein is active alone or as a heteromultimeric assembly with TRPC1, TRPC3, and TRPC4. It also interacts with multiple proteins including calmodulin, CABP1, enkurin, Na(+)-H+ exchange regulatory factor (NHERF ), interferon-induced GTP-binding protein (MX1), ring finger protein 24 (RNF24), and SEC14 domain and spectrin repeat-containing protein 1 (SESTD1). [provided by RefSeq, May 2010]

VN1R2 Gene

vomeronasal 1 receptor 2

VN1R3 Gene

vomeronasal 1 receptor 3 (gene/pseudogene)

VN1R1 Gene

vomeronasal 1 receptor 1

Pheromones are chemical signals that elicit specific behavioral responses and physiologic alterations in recipients of the same species. The protein encoded by this gene is similar to pheromone receptors and is primarily localized to the olfactory mucosa. An alternate splice variant of this gene is thought to exist, but its full length nature has not been determined. [provided by RefSeq, Jul 2008]

VN1R4 Gene

vomeronasal 1 receptor 4

VN1R5 Gene

vomeronasal 1 receptor 5 (gene/pseudogene)

GNRHR2 Gene

gonadotropin-releasing hormone (type 2) receptor 2, pseudogene

In non-hominoid primates and non-mammalian vertebrates, the gonadotropin releasing hormone 2 receptor gene (GnRHR2) encodes a seven-transmembrane G-protein coupled receptor. However, in human, the corresponding reading frame contains a premature stop codon, which has been suggested to encode a selenocysteine residue, but there is no solid evidence for selenocysteine incorporation (PMID: 12538601). It appears that the human GnRHR2 transcription occurs but the gene does not likely produce a functional multi-transmembrane protein. A non-transcribed pseudogene of GnRHR2 is located on chromosome 14. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2013]

OR5M5P Gene

olfactory receptor, family 5, subfamily M, member 5 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10T1P Gene

olfactory receptor, family 10, subfamily T, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

GPR39 Gene

G protein-coupled receptor 39

GPR31 Gene

G protein-coupled receptor 31

GPR33 Gene

G protein-coupled receptor 33 (gene/pseudogene)

This gene has been identified as an orphan chemoattractant G-protein-coupled receptors (GPCR) pseudogene. Studies have shown that the inactivated gene is present as the predominant allele in the human population. A small fraction of the human population has been found to harbor an intact allele.[provided by RefSeq, Oct 2010]

GPR32 Gene

G protein-coupled receptor 32

This gene is intronless and encodes a member of the G-protein coupled receptor 1 family. The encoded protein binds to resolvin D1 and lipoxin A4 and has been linked to pulmonary inflammation. A related pseudogene has been identified on chromosome 19. [provided by RefSeq, Nov 2012]

GPR35 Gene

G protein-coupled receptor 35

GPR34 Gene

G protein-coupled receptor 34

G protein-coupled receptors (GPCRs), such as GPR34, are integral membrane proteins containing 7 putative transmembrane domains (TMs). These proteins mediate signals to the interior of the cell via activation of heterotrimeric G proteins that in turn activate various effector proteins, ultimately resulting in a physiologic response.[supplied by OMIM, Apr 2006]

GPR36 Gene

G protein-coupled receptor 36

RIPK4 Gene

receptor-interacting serine-threonine kinase 4

The protein encoded by this gene is a serine/threonine protein kinase that interacts with protein kinase C-delta. The encoded protein can also activate NFkappaB and is required for keratinocyte differentiation. This kinase undergoes autophosphorylation. [provided by RefSeq, Jul 2008]

TAAR4P Gene

trace amine associated receptor 4, pseudogene

OR1K1 Gene

olfactory receptor, family 1, subfamily K, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

VN1R28P Gene

vomeronasal 1 receptor 28 pseudogene

TAS2R6P Gene

taste receptor, type 2, member 6, pseudogene

OR3D1P Gene

olfactory receptor, family 3, subfamily D, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

FCRL6P1 Gene

Fc receptor-like 6 pseudogene 1

LOC100421513 Gene

transducin (beta)-like 1 X-linked receptor 1 pseudogene

IGFLR1 Gene

IGF-like family receptor 1

TAS2R60 Gene

taste receptor, type 2, member 60

LTB4R2 Gene

leukotriene B4 receptor 2

OPRM1 Gene

opioid receptor, mu 1

This gene encodes one of at least three opioid receptors in humans; the mu opioid receptor (MOR). The MOR is the principal target of endogenous opioid peptides and opioid analgesic agents such as beta-endorphin and enkephalins. The MOR also has an important role in dependence to other drugs of abuse, such as nicotine, cocaine, and alcohol via its modulation of the dopamine system. The NM_001008503.2:c.118A>G allele has been associated with opioid and alcohol addiction and variations in pain sensitivity but evidence for it having a causal role is conflicting. Multiple transcript variants encoding different isoforms have been found for this gene. Though the canonical MOR belongs to the superfamily of 7-transmembrane-spanning G-protein-coupled receptors some isoforms of this gene have only 6 transmembrane domains. [provided by RefSeq, Oct 2013]

PVRIG2P Gene

poliovirus receptor related immunoglobulin domain containing 2, pseudogene

AVPR1B Gene

arginine vasopressin receptor 1B

The protein encoded by this gene acts as receptor for arginine vasopressin. This receptor belongs to the subfamily of G-protein coupled receptors which includes AVPR1A, V2R and OXT receptors. Its activity is mediated by G proteins which stimulate a phosphatidylinositol-calcium second messenger system. The receptor is primarily located in the anterior pituitary, where it stimulates ACTH release. It is expressed at high levels in ACTH-secreting pituitary adenomas as well as in bronchial carcinoids responsible for the ectopic ACTH syndrome. A spliced antisense transcript of this gene has been reported but its function is not known. [provided by RefSeq, Jul 2008]

AVPR1A Gene

arginine vasopressin receptor 1A

The protein encoded by this gene acts as receptor for arginine vasopressin. This receptor belongs to the subfamily of G-protein coupled receptors which includes AVPR1B, V2R and OXT receptors. Its activity is mediated by G proteins which stimulate a phosphatidylinositol-calcium second messenger system. The receptor mediates cell contraction and proliferation, platelet aggregation, release of coagulation factor and glycogenolysis. [provided by RefSeq, Jul 2008]

MCHR2 Gene

melanin-concentrating hormone receptor 2

MCHR1 Gene

melanin-concentrating hormone receptor 1

The protein encoded by this gene, a member of the G protein-coupled receptor family 1, is an integral plasma membrane protein which binds melanin-concentrating hormone. The encoded protein can inhibit cAMP accumulation and stimulate intracellular calcium flux, and is probably involved in the neuronal regulation of food consumption. Although structurally similar to somatostatin receptors, this protein does not seem to bind somatostatin. [provided by RefSeq, Jul 2008]

LOC100418635 Gene

olfactory receptor, family 2, subfamily W, member 1 pseudogene

OR7E8P Gene

olfactory receptor, family 7, subfamily E, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5H7P Gene

olfactory receptor, family 5, subfamily H, member 7 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10H2 Gene

olfactory receptor, family 10, subfamily H, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10H3 Gene

olfactory receptor, family 10, subfamily H, member 3

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10H1 Gene

olfactory receptor, family 10, subfamily H, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10H4 Gene

olfactory receptor, family 10, subfamily H, member 4

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10H5 Gene

olfactory receptor, family 10, subfamily H, member 5

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

C3AR1 Gene

complement component 3a receptor 1

TNFRSF11A Gene

tumor necrosis factor receptor superfamily, member 11a, NFKB activator

The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptors can interact with various TRAF family proteins, through which this receptor induces the activation of NF-kappa B and MAPK8/JNK. This receptor and its ligand are important regulators of the interaction between T cells and dendritic cells. This receptor is also an essential mediator for osteoclast and lymph node development. Mutations at this locus have been associated with familial expansile osteolysis, autosomal recessive osteopetrosis, and Paget disease of bone. Alternatively spliced transcript variants have been described for this locus. [provided by RefSeq, Aug 2012]

TNFRSF11B Gene

tumor necrosis factor receptor superfamily, member 11b

The protein encoded by this gene is a member of the TNF-receptor superfamily. This protein is an osteoblast-secreted decoy receptor that functions as a negative regulator of bone resorption. This protein specifically binds to its ligand, osteoprotegerin ligand, both of which are key extracellular regulators of osteoclast development. Studies of the mouse counterpart also suggest that this protein and its ligand play a role in lymph-node organogenesis and vascular calcification. Alternatively spliced transcript variants of this gene have been reported, but their full length nature has not been determined. [provided by RefSeq, Jul 2008]

VN1R24P Gene

vomeronasal 1 receptor 24 pseudogene

VN1R32P Gene

vomeronasal 1 receptor 32 pseudogene

OR6N1 Gene

olfactory receptor, family 6, subfamily N, member 1

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR6N2 Gene

olfactory receptor, family 6, subfamily N, member 2

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

PTH1R Gene

parathyroid hormone 1 receptor

The protein encoded by this gene is a member of the G-protein coupled receptor family 2. This protein is a receptor for parathyroid hormone (PTH) and for parathyroid hormone-like hormone (PTHLH). The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system. Defects in this receptor are known to be the cause of Jansen's metaphyseal chondrodysplasia (JMC), chondrodysplasia Blomstrand type (BOCD), as well as enchodromatosis. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, May 2010]

VN1R74P Gene

vomeronasal 1 receptor 74 pseudogene

BMPR1A Gene

bone morphogenetic protein receptor, type IA

The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF-betas and activins transduce their signals through the formation of heteromeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. [provided by RefSeq, Jul 2008]

BMPR1B Gene

bone morphogenetic protein receptor, type IB

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and embryogenesis. These proteins transduce their signals through the formation of heteromeric complexes of 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. Mutations in this gene have been associated with primary pulmonary hypertension. Several transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Feb 2012]

OR6C72P Gene

olfactory receptor, family 6, subfamily C, member 72 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR10J8P Gene

olfactory receptor, family 10, subfamily J, member 8 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR2R1P Gene

olfactory receptor, family 2, subfamily R, member 1, pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR5BE1P Gene

olfactory receptor, family 5, subfamily BE, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

OR52Q1P Gene

olfactory receptor, family 52, subfamily Q, member 1 pseudogene

Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq, Jul 2008]

IRAG2 Gene

inositol 1,4,5-triphosphate receptor associated 2

NSD3 Gene

nuclear receptor binding SET domain protein 3

NSD2 Gene

nuclear receptor binding SET domain protein 2

GRK2 Gene

G protein-coupled receptor kinase 2

SRPRA Gene

SRP receptor subunit alpha

VSIR Gene

V-set immunoregulatory receptor

RACK1 Gene

receptor for activated C kinase 1

GRK3 Gene

G protein-coupled receptor kinase 3

LOC107987462 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

LOC112268384 Gene

olfactory receptor 2A1/2A42

OR4M2B Gene

olfactory receptor family 4 subfamily M member 2B

GPRASP3 Gene

G protein-coupled receptor associated sorting protein family member 3

MINAR1 Gene

membrane integral NOTCH2 associated receptor 1

HJV Gene

hemojuvelin BMP co-receptor

MINAR2 Gene

membrane integral NOTCH2 associated receptor 2

IRAG1 Gene

inositol 1,4,5-triphosphate receptor associated 1

MPIG6B Gene

megakaryocyte and platelet inhibitory receptor G6b

GPR141BP Gene

G protein-coupled receptor 141B, pseudogene

TAAR3P Gene

trace amine associated receptor 3, pseudogene

CMKLR2 Gene

chemerin chemokine-like receptor 2

OR52P1 Gene

olfactory receptor family 52 subfamily P member 1 (gene/pseudogene)

GPR15LG Gene

G protein-coupled receptor 15 ligand

NPY4R2 Gene

neuropeptide Y receptor Y4-2

SRARP Gene

steroid receptor associated and regulated protein

KLRA1P Gene

killer cell lectin like receptor A1, pseudogene

FCGR1CP Gene

Fc gamma receptor Ic, pseudogene

ARLNC1 Gene

androgen receptor regulated long noncoding RNA 1

PTGER4P2 Gene

prostaglandin E receptor 4 pseudogene 2

FCGR1BP Gene

Fc gamma receptor Ib, pseudogene

LOC107987425 Gene

leukocyte immunoglobulin-like receptor subfamily B member 3

OR8U3 Gene

olfactory receptor family 8 subfamily U member 3

OR4N4C Gene

olfactory receptor family 4 subfamily N member 4C

OR8G3 Gene

olfactory receptor family 8 subfamily G member 3 (gene/pseudogene)

OR2I1 Gene

olfactory receptor family 2 subfamily I member 1 (gene/pseudogene)

OR2B8 Gene

olfactory receptor family 2 subfamily B member 8 (gene/pseudogene)

LOC107987545 Gene

olfactory receptor 2A7

LOC124905743 Gene

low affinity immunoglobulin gamma Fc region receptor III-B

OR5BS1 Gene

olfactory receptor family 5 subfamily BS member 1

OR51C1 Gene

olfactory receptor family 51 subfamily C member 1

OR14L1 Gene

olfactory receptor family 14 subfamily L member 1

LOC124905359 Gene

olfactory receptor 4N4

OR56B2 Gene

olfactory receptor family 56 subfamily B member 2

DORIP1 Gene

dopamine receptor interacting protein 1

Glucocorticoid receptor regulatory network Gene Set

From PID Pathways

proteins participating in the Glucocorticoid receptor regulatory network pathway from the PID Pathways dataset.

Gene regulatory network modelling somitogenesis (Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Gene regulatory network modelling somitogenesis (Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Gene regulatory network modeling somitogenesis Gene Set

From WikiPathways Pathways 2024

proteins participating in the Gene regulatory network modeling somitogenesis pathway from the WikiPathways Pathways 2024 dataset.

interferon regulatory factor 3-interferon regulatory factor 7 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the interferon regulatory factor 3-interferon regulatory factor 7 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

Interferon regulatory factor 3-interferon regulatory factor 7 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor 3-interferon regulatory factor 7 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Interferon regulatory factor 3-interferon regulatory factor 5 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor 3-interferon regulatory factor 5 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

bcli restriction fragment length polymorphism at the glucocorticoid receptor gene locus Gene Set

From GAD Gene-Disease Associations

genes associated with the disease bcli restriction fragment length polymorphism at the glucocorticoid receptor gene locus in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.

regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid receptor activity Gene Set

From GO Molecular Function Annotations 2015

genes performing the glucocorticoid receptor activity molecular function from the curated GO Molecular Function Annotations 2015 dataset.

glucocorticoid receptor binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the glucocorticoid receptor binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

Glucocorticoid receptor Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Glucocorticoid receptor protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Glucocorticoid Receptor Deficiency Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Glucocorticoid Receptor Deficiency in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

negative regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2023

genes participating in the negative regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2023 dataset.

glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2023

genes participating in the glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of glucocorticoid receptor signaling pathway Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of glucocorticoid receptor signaling pathway biological process from the curated GO Biological Process Annotations 2023 dataset.

nuclear glucocorticoid receptor binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the nuclear glucocorticoid receptor binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

Glucocorticoid receptor pathway Gene Set

From WikiPathways Pathways 2024

proteins participating in the Glucocorticoid receptor pathway pathway from the WikiPathways Pathways 2024 dataset.

negative regulation of nuclear receptor-mediated glucocorticoid signaling pathway Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of nuclear receptor-mediated glucocorticoid signaling pathway biological process from the curated GO Biological Process Annotations 2025 dataset.

nuclear receptor-mediated glucocorticoid signaling pathway Gene Set

From GO Biological Process Annotations 2025

genes participating in the nuclear receptor-mediated glucocorticoid signaling pathway biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of nuclear receptor-mediated glucocorticoid signaling pathway Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of nuclear receptor-mediated glucocorticoid signaling pathway biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of nuclear receptor-mediated glucocorticoid signaling pathway Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of nuclear receptor-mediated glucocorticoid signaling pathway biological process from the curated GO Biological Process Annotations 2025 dataset.

nuclear glucocorticoid receptor binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the nuclear glucocorticoid receptor binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

PDGF receptor signaling network Gene Set

From PID Pathways

proteins participating in the PDGF receptor signaling network pathway from the PID Pathways dataset.

Validated nuclear estrogen receptor alpha network Gene Set

From PID Pathways

proteins participating in the Validated nuclear estrogen receptor alpha network pathway from the PID Pathways dataset.

ErbB receptor signaling network Gene Set

From PID Pathways

proteins participating in the ErbB receptor signaling network pathway from the PID Pathways dataset.

Validated nuclear estrogen receptor beta network Gene Set

From PID Pathways

proteins participating in the Validated nuclear estrogen receptor beta network pathway from the PID Pathways dataset.

Androgen receptor network in prostate cancer Gene Set

From WikiPathways Pathways 2024

proteins participating in the Androgen receptor network in prostate cancer pathway from the WikiPathways Pathways 2024 dataset.

Breast cancer (estrogen-receptor negative, progesterone-receptor negative, and human epidermal growth factor-receptor negative) Gene Set

From GWAS Catalog SNP-Phenotype Associations

genes associated with the Breast cancer (estrogen-receptor negative, progesterone-receptor negative, and human epidermal growth factor-receptor negative) phenotype in GWAS datasets from the GWAS Catalog SNP-Phenotype Associations dataset.

Glucocorticoid deficiency 2 Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Glucocorticoid deficiency 2 phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Glucocorticoid deficiency 4 Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Glucocorticoid deficiency 4 phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Glucocorticoid deficiency with achalasia Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Glucocorticoid deficiency with achalasia phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Pseudohermaphroditism, female, with hypokalemia, due to glucocorticoid resistance Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Pseudohermaphroditism, female, with hypokalemia, due to glucocorticoid resistance phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Glucocorticoid resistance, generalized Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Glucocorticoid resistance, generalized phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Glucocorticoid Deficiency 2 Gene Set

From CTD Gene-Disease Associations

genes/proteins associated with the disease Glucocorticoid Deficiency 2 from the curated CTD Gene-Disease Associations dataset.

Glucocorticoid Deficiency 3 Gene Set

From CTD Gene-Disease Associations

genes/proteins associated with the disease Glucocorticoid Deficiency 3 from the curated CTD Gene-Disease Associations dataset.

Familial Glucocorticoid Deficiency 1 Gene Set

From CTD Gene-Disease Associations

genes/proteins associated with the disease Familial Glucocorticoid Deficiency 1 from the curated CTD Gene-Disease Associations dataset.

NATURAL KILLER CELL AND GLUCOCORTICOID DEFICIENCY WITH DNA REPAIR DEFECT Gene Set

From CTD Gene-Disease Associations

genes/proteins associated with the disease NATURAL KILLER CELL AND GLUCOCORTICOID DEFICIENCY WITH DNA REPAIR DEFECT from the curated CTD Gene-Disease Associations dataset.

Glucocorticoid-Remediable Aldosteronism Gene Set

From CTD Gene-Disease Associations

genes/proteins associated with the disease Glucocorticoid-Remediable Aldosteronism from the curated CTD Gene-Disease Associations dataset.

glucocorticoid-remediable aldosteronism Gene Set

From DISEASES Text-mining Gene-Disease Association Evidence Scores

genes co-occuring with the disease glucocorticoid-remediable aldosteronism in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.

glucocorticoid sensitivity Gene Set

From GAD Gene-Disease Associations

genes associated with the disease glucocorticoid sensitivity in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.

familial glucocorticoid deficiency Gene Set

From GAD Gene-Disease Associations

genes associated with the disease familial glucocorticoid deficiency in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.

glucocorticoid deficiency Gene Set

From GAD Gene-Disease Associations

genes associated with the disease glucocorticoid deficiency in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.

glucocorticoid Gene Set

From GeneRIF Biological Term Annotations

genes co-occuring with the biological term glucocorticoid in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.

positive regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2015 dataset.

cellular response to glucocorticoid stimulus Gene Set

From GO Biological Process Annotations 2015

genes participating in the cellular response to glucocorticoid stimulus biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of glucocorticoid mediated signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of glucocorticoid mediated signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2015 dataset.

response to glucocorticoid Gene Set

From GO Biological Process Annotations 2015

genes participating in the response to glucocorticoid biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid mediated signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid mediated signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid catabolic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the glucocorticoid catabolic process biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of glucocorticoid mediated signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of glucocorticoid mediated signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2015 dataset.

glucocorticoid-activated rna polymerase ii transcription factor binding transcription factor activity Gene Set

From GO Molecular Function Annotations 2015

genes performing the glucocorticoid-activated rna polymerase ii transcription factor binding transcription factor activity molecular function from the curated GO Molecular Function Annotations 2015 dataset.

abnormality of circulating glucocorticoid level Gene Set

From GWASdb SNP-Phenotype Associations

genes associated with the abnormality of circulating glucocorticoid level phenotype in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset.

abnormality of circulating glucocorticoid level Gene Set

From HPO Gene-Disease Associations

genes associated with the abnormality of circulating glucocorticoid level phenotype by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset.

Glucocorticoid-induced transcript 1 protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Glucocorticoid-induced transcript 1 protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Glucocorticoid-induced transcript 1/FAM117 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Glucocorticoid-induced transcript 1/FAM117 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Glucocorticoid modulatory element-binding protein 1/2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Glucocorticoid modulatory element-binding protein 1/2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

decreased circulating glucocorticoid level Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the decreased circulating glucocorticoid level phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

increased circulating glucocorticoid level Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the increased circulating glucocorticoid level phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal circulating glucocorticoid level Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal circulating glucocorticoid level phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

glucocorticoid resistance Gene Set

From OMIM Gene-Disease Associations

genes associated with the glucocorticoid resistance phenotype from the curated OMIM Gene-Disease Associations dataset.

glucocorticoid deficiency, due to acth unresponsiveness Gene Set

From OMIM Gene-Disease Associations

genes associated with the glucocorticoid deficiency, due to acth unresponsiveness phenotype from the curated OMIM Gene-Disease Associations dataset.

natural killer cell and glucocorticoid deficiency with dna repair defect Gene Set

From OMIM Gene-Disease Associations

genes associated with the natural killer cell and glucocorticoid deficiency with dna repair defect phenotype from the curated OMIM Gene-Disease Associations dataset.

aldosteronism, glucocorticoid-remediable Gene Set

From OMIM Gene-Disease Associations

genes associated with the aldosteronism, glucocorticoid-remediable phenotype from the curated OMIM Gene-Disease Associations dataset.

{glucocorticoid therapy, response to} Gene Set

From OMIM Gene-Disease Associations

genes associated with the {glucocorticoid therapy, response to} phenotype from the curated OMIM Gene-Disease Associations dataset.

glucocorticoid deficiency 2 Gene Set

From OMIM Gene-Disease Associations

genes associated with the glucocorticoid deficiency 2 phenotype from the curated OMIM Gene-Disease Associations dataset.

glucocorticoid deficiency 3 Gene Set

From OMIM Gene-Disease Associations

genes associated with the glucocorticoid deficiency 3 phenotype from the curated OMIM Gene-Disease Associations dataset.

glucocorticoid deficiency 4 Gene Set

From OMIM Gene-Disease Associations

genes associated with the glucocorticoid deficiency 4 phenotype from the curated OMIM Gene-Disease Associations dataset.

glucocorticoid Gene Set

From Phosphosite Textmining Biological Term Annotations

proteins co-occuring with the biological term glucocorticoid in abstracts of publications describing phosphosites from the Phosphosite Textmining Biological Term Annotations dataset.

Rapid glucocorticoid signaling Gene Set

From PID Pathways

proteins participating in the Rapid glucocorticoid signaling pathway from the PID Pathways dataset.

Glucocorticoid biosynthesis Gene Set

From Reactome Pathways 2014

proteins participating in the Glucocorticoid biosynthesis pathway from the Reactome Pathways dataset.

Glucocorticoid & Mineralcorticoid Metabolism(Mus musculus) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Glucocorticoid & Mineralcorticoid Metabolism(Mus musculus) pathway from the WikiPathways Pathways 2014 dataset.

Glucocorticoid & Mineralcorticoid Metabolism(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Glucocorticoid & Mineralcorticoid Metabolism(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Familial Glucocorticoid Deficiency Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Familial Glucocorticoid Deficiency in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Glucocorticoid Deficiency With Achalasia Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Glucocorticoid Deficiency With Achalasia in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Glucocorticoid-Remediable Aldosteronism Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Glucocorticoid-Remediable Aldosteronism in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Glucocorticoid Deficiency Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Glucocorticoid Deficiency in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Hereditary Glucocorticoid Resistance Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Hereditary Glucocorticoid Resistance in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Pseudohermaphroditism, Female, With Hypokalemia, Due To Glucocorticoid Resistance Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Pseudohermaphroditism, Female, With Hypokalemia, Due To Glucocorticoid Resistance in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Glucocorticoid Resistance, Cellular Gene Set

From DisGeNET Gene-Phenotype Associations

genes associated with the phenotype Glucocorticoid Resistance, Cellular in GWAS and other genetic association datasets from the DisGeNET Gene-Phenotype Associations dataset.

cellular response to glucocorticoid stimulus Gene Set

From GO Biological Process Annotations 2023

genes participating in the cellular response to glucocorticoid stimulus biological process from the curated GO Biological Process Annotations 2023 dataset.

response to glucocorticoid Gene Set

From GO Biological Process Annotations 2023

genes participating in the response to glucocorticoid biological process from the curated GO Biological Process Annotations 2023 dataset.

glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2023 dataset.

glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2023 dataset.

glucocorticoid catabolic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the glucocorticoid catabolic process biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2023 dataset.

negative regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the negative regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2023 dataset.

glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2023

genes participating in the glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2023 dataset.

decreased circulating glucocorticoid level Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the decreased circulating glucocorticoid level phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

Classical pathway of steroidogenesis with glucocorticoid and mineralocorticoid metabolism Gene Set

From WikiPathways Pathways 2024

proteins participating in the Classical pathway of steroidogenesis with glucocorticoid and mineralocorticoid metabolism pathway from the WikiPathways Pathways 2024 dataset.

Glucocorticoid biosynthesis Gene Set

From WikiPathways Pathways 2024

proteins participating in the Glucocorticoid biosynthesis pathway from the WikiPathways Pathways 2024 dataset.

Glucocorticoid biosynthesis Gene Set

From Reactome Pathways 2024

proteins participating in the Glucocorticoid biosynthesis pathway from the Reactome Pathways 2024 dataset.

positive regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2025 dataset.

cellular response to glucocorticoid stimulus Gene Set

From GO Biological Process Annotations 2025

genes participating in the cellular response to glucocorticoid stimulus biological process from the curated GO Biological Process Annotations 2025 dataset.

response to glucocorticoid Gene Set

From GO Biological Process Annotations 2025

genes participating in the response to glucocorticoid biological process from the curated GO Biological Process Annotations 2025 dataset.

glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2025 dataset.

glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2025 dataset.

glucocorticoid catabolic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the glucocorticoid catabolic process biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of glucocorticoid metabolic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of glucocorticoid metabolic process biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2025 dataset.

negative regulation of glucocorticoid biosynthetic process Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of glucocorticoid biosynthetic process biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2025 dataset.

glucocorticoid secretion Gene Set

From GO Biological Process Annotations 2025

genes participating in the glucocorticoid secretion biological process from the curated GO Biological Process Annotations 2025 dataset.

Familial glucocorticoid deficiency Gene Set

From DISEASES Curated Gene-Disease Association Evidence Scores 2025

genes involed in the disease Familial glucocorticoid deficiency from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset.

glucocorticoid-remediable aldosteronism Gene Set

From DISEASES Text-mining Gene-Disease Association Evidence Scores 2025

genes co-occuring with the disease glucocorticoid-remediable aldosteronism in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.

glucocorticoid-induced osteoporosis Gene Set

From DISEASES Text-mining Gene-Disease Association Evidence Scores 2025

genes co-occuring with the disease glucocorticoid-induced osteoporosis in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.

Glucocorticoid deficiency 1 Gene Set

From DISEASES Text-mining Gene-Disease Association Evidence Scores 2025

genes co-occuring with the disease Glucocorticoid deficiency 1 in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.

Familial glucocorticoid deficiency Gene Set

From DISEASES Text-mining Gene-Disease Association Evidence Scores 2025

genes co-occuring with the disease Familial glucocorticoid deficiency in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.

trans-golgi network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the trans-golgi network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

trans-golgi network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the trans-golgi network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

network-forming collagen trimer Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the network-forming collagen trimer cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

endoplasmic reticulum tubular network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the endoplasmic reticulum tubular network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

nuclear outer membrane-endoplasmic reticulum membrane network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the nuclear outer membrane-endoplasmic reticulum membrane network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

cis-golgi network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the cis-golgi network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

trans-golgi network transport vesicle membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the trans-golgi network transport vesicle membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

platelet dense tubular network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the platelet dense tubular network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

cis-golgi network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the cis-golgi network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

trans-golgi network transport vesicle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the trans-golgi network transport vesicle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

platelet dense tubular network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the platelet dense tubular network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

clathrin coat of trans-golgi network vesicle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the clathrin coat of trans-golgi network vesicle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

glycoprotein network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the glycoprotein network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

trans-golgi network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the trans-golgi network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

network-forming collagen trimer Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the network-forming collagen trimer cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

trans-golgi network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the trans-golgi network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

endoplasmic reticulum tubular network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the endoplasmic reticulum tubular network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

nuclear outer membrane-endoplasmic reticulum membrane network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the nuclear outer membrane-endoplasmic reticulum membrane network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

cis-golgi network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the cis-golgi network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

trans-golgi network transport vesicle membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the trans-golgi network transport vesicle membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

cis-golgi network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the cis-golgi network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

trans-golgi network transport vesicle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the trans-golgi network transport vesicle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

clathrin coat of trans-golgi network vesicle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the clathrin coat of trans-golgi network vesicle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

network Gene Set

From GeneRIF Biological Term Annotations

genes co-occuring with the biological term network in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.

positive regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2015 dataset.

endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2015

genes participating in the endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2015 dataset.

protein localization to endoplasmic reticulum tubular network Gene Set

From GO Biological Process Annotations 2015

genes participating in the protein localization to endoplasmic reticulum tubular network biological process from the curated GO Biological Process Annotations 2015 dataset.

trans-golgi network to recycling endosome transport Gene Set

From GO Biological Process Annotations 2015

genes participating in the trans-golgi network to recycling endosome transport biological process from the curated GO Biological Process Annotations 2015 dataset.

trans-golgi network membrane organization Gene Set

From GO Biological Process Annotations 2015

genes participating in the trans-golgi network membrane organization biological process from the curated GO Biological Process Annotations 2015 dataset.

actin filament network formation Gene Set

From GO Biological Process Annotations 2015

genes participating in the actin filament network formation biological process from the curated GO Biological Process Annotations 2015 dataset.

trans-golgi network membrane Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the trans-golgi network membrane cellular component from the curated GO Cellular Component Annotations 2015 dataset.

network-forming collagen trimer Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the network-forming collagen trimer cellular component from the curated GO Cellular Component Annotations 2015 dataset.

trans-golgi network Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the trans-golgi network cellular component from the curated GO Cellular Component Annotations 2015 dataset.

endoplasmic reticulum tubular network Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the endoplasmic reticulum tubular network cellular component from the curated GO Cellular Component Annotations 2015 dataset.

nuclear outer membrane-endoplasmic reticulum membrane network Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the nuclear outer membrane-endoplasmic reticulum membrane network cellular component from the curated GO Cellular Component Annotations 2015 dataset.

cis-golgi network Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the cis-golgi network cellular component from the curated GO Cellular Component Annotations 2015 dataset.

trans-golgi network transport vesicle membrane Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the trans-golgi network transport vesicle membrane cellular component from the curated GO Cellular Component Annotations 2015 dataset.

platelet dense tubular network membrane Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the platelet dense tubular network membrane cellular component from the curated GO Cellular Component Annotations 2015 dataset.

trans-golgi network transport vesicle Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the trans-golgi network transport vesicle cellular component from the curated GO Cellular Component Annotations 2015 dataset.

platelet dense tubular network Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the platelet dense tubular network cellular component from the curated GO Cellular Component Annotations 2015 dataset.

clathrin coat of trans-golgi network vesicle Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the clathrin coat of trans-golgi network vesicle cellular component from the curated GO Cellular Component Annotations 2015 dataset.

Trans-Golgi network integral membrane protein TGN38 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Trans-Golgi network integral membrane protein TGN38 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

trans-golgi network Gene Set

From LOCATE Curated Protein Localization Annotations

proteins localized to the trans-golgi network cellular component in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset.

abnormal spleen follicular dendritic cell network Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal spleen follicular dendritic cell network phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal dermis reticular layer collagen network Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal dermis reticular layer collagen network phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

absent organized vascular network Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the absent organized vascular network phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

Wnt signaling network Gene Set

From PID Pathways

proteins participating in the Wnt signaling network pathway from the PID Pathways dataset.

ATF-2 transcription factor network Gene Set

From PID Pathways

proteins participating in the ATF-2 transcription factor network pathway from the PID Pathways dataset.

FOXA1 transcription factor network Gene Set

From PID Pathways

proteins participating in the FOXA1 transcription factor network pathway from the PID Pathways dataset.

E2F transcription factor network Gene Set

From PID Pathways

proteins participating in the E2F transcription factor network pathway from the PID Pathways dataset.

AP-1 transcription factor network Gene Set

From PID Pathways

proteins participating in the AP-1 transcription factor network pathway from the PID Pathways dataset.

Glypican 3 network Gene Set

From PID Pathways

proteins participating in the Glypican 3 network pathway from the PID Pathways dataset.

Glypican 2 network Gene Set

From PID Pathways

proteins participating in the Glypican 2 network pathway from the PID Pathways dataset.

HIF-2-alpha transcription factor network Gene Set

From PID Pathways

proteins participating in the HIF-2-alpha transcription factor network pathway from the PID Pathways dataset.

p73 transcription factor network Gene Set

From PID Pathways

proteins participating in the p73 transcription factor network pathway from the PID Pathways dataset.

VEGF and VEGFR signaling network Gene Set

From PID Pathways

proteins participating in the VEGF and VEGFR signaling network pathway from the PID Pathways dataset.

C-MYB transcription factor network Gene Set

From PID Pathways

proteins participating in the C-MYB transcription factor network pathway from the PID Pathways dataset.

HIF-1-alpha transcription factor network Gene Set

From PID Pathways

proteins participating in the HIF-1-alpha transcription factor network pathway from the PID Pathways dataset.

FOXM1 transcription factor network Gene Set

From PID Pathways

proteins participating in the FOXM1 transcription factor network pathway from the PID Pathways dataset.

Notch-mediated HES/HEY network Gene Set

From PID Pathways

proteins participating in the Notch-mediated HES/HEY network pathway from the PID Pathways dataset.

Glypican 1 network Gene Set

From PID Pathways

proteins participating in the Glypican 1 network pathway from the PID Pathways dataset.

Negative regulation of the PI3K/AKT network Gene Set

From Reactome Pathways 2014

proteins participating in the Negative regulation of the PI3K/AKT network pathway from the Reactome Pathways dataset.

trans-Golgi Network Vesicle Budding Gene Set

From Reactome Pathways 2014

proteins participating in the trans-Golgi Network Vesicle Budding pathway from the Reactome Pathways dataset.

Gastric cancer network 2(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Gastric cancer network 2(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Hypothetical Network for Drug Addiction(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Hypothetical Network for Drug Addiction(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Apoptosis-related network due to altered Notch3 in ovarian cancer(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Apoptosis-related network due to altered Notch3 in ovarian cancer(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Folic Acid Network(Mus musculus) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Folic Acid Network(Mus musculus) pathway from the WikiPathways Pathways 2014 dataset.

Selenium Micronutrient Network(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Selenium Micronutrient Network(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

TP53 Network(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the TP53 Network(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

Hypothetical Network for Drug Addiction(Mus musculus) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Hypothetical Network for Drug Addiction(Mus musculus) pathway from the WikiPathways Pathways 2014 dataset.

Selenium Micronutrient Network(Mus musculus) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Selenium Micronutrient Network(Mus musculus) pathway from the WikiPathways Pathways 2014 dataset.

Gastric cancer network 1(Homo sapiens) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Gastric cancer network 1(Homo sapiens) pathway from the WikiPathways Pathways 2014 dataset.

actin filament network formation Gene Set

From GO Biological Process Annotations 2023

genes participating in the actin filament network formation biological process from the curated GO Biological Process Annotations 2023 dataset.

endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2023

genes participating in the endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2023 dataset.

endoplasmic reticulum tubular network formation Gene Set

From GO Biological Process Annotations 2023

genes participating in the endoplasmic reticulum tubular network formation biological process from the curated GO Biological Process Annotations 2023 dataset.

trans-Golgi network to recycling endosome transport Gene Set

From GO Biological Process Annotations 2023

genes participating in the trans-Golgi network to recycling endosome transport biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2023 dataset.

trans-Golgi network membrane organization Gene Set

From GO Biological Process Annotations 2023

genes participating in the trans-Golgi network membrane organization biological process from the curated GO Biological Process Annotations 2023 dataset.

endoplasmic reticulum tubular network membrane organization Gene Set

From GO Biological Process Annotations 2023

genes participating in the endoplasmic reticulum tubular network membrane organization biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2023 dataset.

protein localization to endoplasmic reticulum tubular network Gene Set

From GO Biological Process Annotations 2023

genes participating in the protein localization to endoplasmic reticulum tubular network biological process from the curated GO Biological Process Annotations 2023 dataset.

endoplasmic reticulum tubular network maintenance Gene Set

From GO Biological Process Annotations 2023

genes participating in the endoplasmic reticulum tubular network maintenance biological process from the curated GO Biological Process Annotations 2023 dataset.

trans-Golgi network Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the trans-Golgi network cellular component from the curated GO Cellular Component Annotations 2023 dataset.

trans-Golgi network membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the trans-Golgi network membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

trans-Golgi network transport vesicle Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the trans-Golgi network transport vesicle cellular component from the curated GO Cellular Component Annotations 2023 dataset.

cis-Golgi network Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the cis-Golgi network cellular component from the curated GO Cellular Component Annotations 2023 dataset.

platelet dense tubular network membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the platelet dense tubular network membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

trans-Golgi network transport vesicle membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the trans-Golgi network transport vesicle membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

clathrin coat of trans-Golgi network vesicle Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the clathrin coat of trans-Golgi network vesicle cellular component from the curated GO Cellular Component Annotations 2023 dataset.

platelet dense tubular network Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the platelet dense tubular network cellular component from the curated GO Cellular Component Annotations 2023 dataset.

cis-Golgi network membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the cis-Golgi network membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

endoplasmic reticulum tubular network Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the endoplasmic reticulum tubular network cellular component from the curated GO Cellular Component Annotations 2023 dataset.

endoplasmic reticulum tubular network membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the endoplasmic reticulum tubular network membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

cytoplasmic side of trans-Golgi network transport vesicle membrane Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the cytoplasmic side of trans-Golgi network transport vesicle membrane cellular component from the curated GO Cellular Component Annotations 2023 dataset.

absent organized vascular network Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the absent organized vascular network phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal spleen follicular dendritic cell network Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal spleen follicular dendritic cell network phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal dermis reticular layer collagen network Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal dermis reticular layer collagen network phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

Selenium micronutrient network Gene Set

From WikiPathways Pathways 2024

proteins participating in the Selenium micronutrient network pathway from the WikiPathways Pathways 2024 dataset.

TP53 network Gene Set

From WikiPathways Pathways 2024

proteins participating in the TP53 network pathway from the WikiPathways Pathways 2024 dataset.

Gastric cancer network 1 Gene Set

From WikiPathways Pathways 2024

proteins participating in the Gastric cancer network 1 pathway from the WikiPathways Pathways 2024 dataset.

Gastric cancer network 2 Gene Set

From WikiPathways Pathways 2024

proteins participating in the Gastric cancer network 2 pathway from the WikiPathways Pathways 2024 dataset.

Apoptosis related network due to altered Notch3 in ovarian cancer Gene Set

From WikiPathways Pathways 2024

proteins participating in the Apoptosis related network due to altered Notch3 in ovarian cancer pathway from the WikiPathways Pathways 2024 dataset.

TYROBP causal network in microglia Gene Set

From WikiPathways Pathways 2024

proteins participating in the TYROBP causal network in microglia pathway from the WikiPathways Pathways 2024 dataset.

MicroRNA network associated with chronic lymphocytic leukemia Gene Set

From WikiPathways Pathways 2024

proteins participating in the MicroRNA network associated with chronic lymphocytic leukemia pathway from the WikiPathways Pathways 2024 dataset.

DNA repair pathways full network Gene Set

From WikiPathways Pathways 2024

proteins participating in the DNA repair pathways full network pathway from the WikiPathways Pathways 2024 dataset.

p53 transcriptional gene network Gene Set

From WikiPathways Pathways 2024

proteins participating in the p53 transcriptional gene network pathway from the WikiPathways Pathways 2024 dataset.

Network map of SARS CoV 2 signaling Gene Set

From WikiPathways Pathways 2024

proteins participating in the Network map of SARS CoV 2 signaling pathway from the WikiPathways Pathways 2024 dataset.

Negative regulation of the PI3K/AKT network Gene Set

From Reactome Pathways 2024

proteins participating in the Negative regulation of the PI3K/AKT network pathway from the Reactome Pathways 2024 dataset.

Retrograde transport at the Trans-Golgi-Network Gene Set

From Reactome Pathways 2024

proteins participating in the Retrograde transport at the Trans-Golgi-Network pathway from the Reactome Pathways 2024 dataset.

trans-Golgi Network Vesicle Budding Gene Set

From Reactome Pathways 2024

proteins participating in the trans-Golgi Network Vesicle Budding pathway from the Reactome Pathways 2024 dataset.

actin filament network formation Gene Set

From GO Biological Process Annotations 2025

genes participating in the actin filament network formation biological process from the curated GO Biological Process Annotations 2025 dataset.

endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2025

genes participating in the endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2025 dataset.

endoplasmic reticulum tubular network formation Gene Set

From GO Biological Process Annotations 2025

genes participating in the endoplasmic reticulum tubular network formation biological process from the curated GO Biological Process Annotations 2025 dataset.

trans-Golgi network to recycling endosome transport Gene Set

From GO Biological Process Annotations 2025

genes participating in the trans-Golgi network to recycling endosome transport biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2025 dataset.

trans-Golgi network membrane organization Gene Set

From GO Biological Process Annotations 2025

genes participating in the trans-Golgi network membrane organization biological process from the curated GO Biological Process Annotations 2025 dataset.

endoplasmic reticulum tubular network membrane organization Gene Set

From GO Biological Process Annotations 2025

genes participating in the endoplasmic reticulum tubular network membrane organization biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of endoplasmic reticulum tubular network organization Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of endoplasmic reticulum tubular network organization biological process from the curated GO Biological Process Annotations 2025 dataset.

protein localization to endoplasmic reticulum tubular network Gene Set

From GO Biological Process Annotations 2025

genes participating in the protein localization to endoplasmic reticulum tubular network biological process from the curated GO Biological Process Annotations 2025 dataset.

endoplasmic reticulum tubular network maintenance Gene Set

From GO Biological Process Annotations 2025

genes participating in the endoplasmic reticulum tubular network maintenance biological process from the curated GO Biological Process Annotations 2025 dataset.

trans-Golgi network Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the trans-Golgi network cellular component from the curated GO Cellular Component Annotations 2025 dataset.

trans-Golgi network membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the trans-Golgi network membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

trans-Golgi network transport vesicle Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the trans-Golgi network transport vesicle cellular component from the curated GO Cellular Component Annotations 2025 dataset.

cis-Golgi network Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the cis-Golgi network cellular component from the curated GO Cellular Component Annotations 2025 dataset.

platelet dense tubular network membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the platelet dense tubular network membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

trans-Golgi network transport vesicle membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the trans-Golgi network transport vesicle membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

clathrin coat of trans-Golgi network vesicle Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the clathrin coat of trans-Golgi network vesicle cellular component from the curated GO Cellular Component Annotations 2025 dataset.

platelet dense tubular network Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the platelet dense tubular network cellular component from the curated GO Cellular Component Annotations 2025 dataset.

cis-Golgi network membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the cis-Golgi network membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

endoplasmic reticulum tubular network Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the endoplasmic reticulum tubular network cellular component from the curated GO Cellular Component Annotations 2025 dataset.

endoplasmic reticulum tubular network membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the endoplasmic reticulum tubular network membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

cytoplasmic side of trans-Golgi network transport vesicle membrane Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the cytoplasmic side of trans-Golgi network transport vesicle membrane cellular component from the curated GO Cellular Component Annotations 2025 dataset.

interstitial hexagonal collagen network Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the interstitial hexagonal collagen network cellular component from the curated GO Cellular Component Annotations 2025 dataset.

Nuclear outer membrane-endoplasmic reticulum membrane network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Nuclear outer membrane-endoplasmic reticulum membrane network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network transport vesicle membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the trans-Golgi network transport vesicle membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network transport vesicle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the trans-Golgi network transport vesicle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the trans-Golgi network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Endoplasmic reticulum tubular network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Endoplasmic reticulum tubular network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

cis-Golgi network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the cis-Golgi network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the trans-Golgi network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Clathrin coat of trans-Golgi network vesicle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Clathrin coat of trans-Golgi network vesicle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Endoplasmic reticulum tubular network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Endoplasmic reticulum tubular network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Cytoplasmic side of trans-Golgi network transport vesicle membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Cytoplasmic side of trans-Golgi network transport vesicle membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

cis-Golgi network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the cis-Golgi network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Platelet dense tubular network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Platelet dense tubular network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Platelet dense tubular network membrane Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Platelet dense tubular network membrane cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Collagen network Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Collagen network cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

network-forming collagen trimer Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the network-forming collagen trimer cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Nuclear outer membrane-endoplasmic reticulum membrane network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Nuclear outer membrane-endoplasmic reticulum membrane network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the trans-Golgi network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Glycoprotein network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Glycoprotein network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Collagen network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Collagen network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Clathrin coat of trans-Golgi network vesicle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Clathrin coat of trans-Golgi network vesicle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network transport vesicle membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the trans-Golgi network transport vesicle membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network transport vesicle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the trans-Golgi network transport vesicle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Endoplasmic reticulum tubular network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Endoplasmic reticulum tubular network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

cis-Golgi network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the cis-Golgi network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Endoplasmic reticulum cisternal network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Endoplasmic reticulum cisternal network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

cis-Golgi network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the cis-Golgi network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Platelet dense tubular network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Platelet dense tubular network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Hemicellulose network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Hemicellulose network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Subpellicular network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Subpellicular network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

network-forming collagen trimer Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the network-forming collagen trimer cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Platelet dense tubular network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Platelet dense tubular network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

trans-Golgi network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the trans-Golgi network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Lignin network Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Lignin network cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Endoplasmic reticulum tubular network membrane Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Endoplasmic reticulum tubular network membrane cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

cdc25 and chk1 regulatory pathway in response to dna damage Gene Set

From Biocarta Pathways

proteins participating in the cdc25 and chk1 regulatory pathway in response to dna damage pathway from the Biocarta Pathways dataset.

proteasome regulatory particle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the proteasome regulatory particle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

proteasome regulatory particle, base subcomplex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the proteasome regulatory particle, base subcomplex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

proteasome regulatory particle, lid subcomplex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the proteasome regulatory particle, lid subcomplex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

proteasome regulatory particle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the proteasome regulatory particle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

interferon regulatory factor complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the interferon regulatory factor complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

interferon regulatory factor 3 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the interferon regulatory factor 3 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

Emerin regulatory complex Gene Set

From CORUM Protein Complexes

proteins in the Emerin regulatory complex protein complex from the CORUM Protein Complexes dataset.

Iron-Regulatory Proteins Gene Set

From dbGAP Gene-Trait Associations

genes associated with the trait Iron-Regulatory Proteins in GWAS and other genetic association datasets from the dbGAP Gene-Trait Associations dataset.

iron-regulatory proteins Gene Set

From GAD Gene-Disease Associations

genes associated with the disease iron-regulatory proteins in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.

regulatory Gene Set

From GeneRIF Biological Term Annotations

genes co-occuring with the biological term regulatory in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.

FOXP3_ABLATION_GDS2525_64_mouse_mature regulatory T cells (Treg) Gene Set

From GEO Signatures of Differentially Expressed Genes for Gene Perturbations

genes differentially expressed following the FOXP3_ABLATION_GDS2525_64_mouse_mature regulatory T cells (Treg) gene perturbation from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.

HDAC6_KO_GSE27896_383_mouse_Foxp3+ T-regulatory cells Gene Set

From GEO Signatures of Differentially Expressed Genes for Gene Perturbations

genes differentially expressed following the HDAC6_KO_GSE27896_383_mouse_Foxp3+ T-regulatory cells gene perturbation from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.

HDAC6_KO_GDS4375_372_mouse_CD4+CD25+ T-regulatory cells Gene Set

From GEO Signatures of Differentially Expressed Genes for Gene Perturbations

genes differentially expressed following the HDAC6_KO_GDS4375_372_mouse_CD4+CD25+ T-regulatory cells gene perturbation from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.

negative regulation of transcription regulatory region dna binding Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of transcription regulatory region dna binding biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of rna polymerase ii regulatory region sequence-specific dna binding Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of rna polymerase ii regulatory region sequence-specific dna binding biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of rna polymerase ii regulatory region sequence-specific dna binding Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of rna polymerase ii regulatory region sequence-specific dna binding biological process from the curated GO Biological Process Annotations 2015 dataset.

proteasome regulatory particle assembly Gene Set

From GO Biological Process Annotations 2015

genes participating in the proteasome regulatory particle assembly biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of transcription regulatory region dna binding Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of transcription regulatory region dna binding biological process from the curated GO Biological Process Annotations 2015 dataset.

cd4-positive, cd25-positive, alpha-beta regulatory t cell lineage commitment Gene Set

From GO Biological Process Annotations 2015

genes participating in the cd4-positive, cd25-positive, alpha-beta regulatory t cell lineage commitment biological process from the curated GO Biological Process Annotations 2015 dataset.

sterol regulatory element binding protein import into nucleus Gene Set

From GO Biological Process Annotations 2015

genes participating in the sterol regulatory element binding protein import into nucleus biological process from the curated GO Biological Process Annotations 2015 dataset.

regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

negative regulation of regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the negative regulation of regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

regulation of transcription regulatory region dna binding Gene Set

From GO Biological Process Annotations 2015

genes participating in the regulation of transcription regulatory region dna binding biological process from the curated GO Biological Process Annotations 2015 dataset.

cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

positive regulation of cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation Gene Set

From GO Biological Process Annotations 2015

genes participating in the positive regulation of cd4-positive, cd25-positive, alpha-beta regulatory t cell differentiation biological process from the curated GO Biological Process Annotations 2015 dataset.

proteasome regulatory particle Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the proteasome regulatory particle cellular component from the curated GO Cellular Component Annotations 2015 dataset.

proteasome regulatory particle, base subcomplex Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the proteasome regulatory particle, base subcomplex cellular component from the curated GO Cellular Component Annotations 2015 dataset.

proteasome regulatory particle, lid subcomplex Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the proteasome regulatory particle, lid subcomplex cellular component from the curated GO Cellular Component Annotations 2015 dataset.

rna polymerase iii regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase iii regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase i regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase i regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

transcription regulatory region sequence-specific dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the transcription regulatory region sequence-specific dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase ii regulatory region sequence-specific dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase ii regulatory region sequence-specific dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase ii transcription regulatory region sequence-specific dna binding transcription factor activity involved in negative regulation of transcription Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase ii transcription regulatory region sequence-specific dna binding transcription factor activity involved in negative regulation of transcription molecular function from the curated GO Molecular Function Annotations 2015 dataset.

intronic transcription regulatory region sequence-specific dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the intronic transcription regulatory region sequence-specific dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase ii transcription regulatory region sequence-specific dna binding transcription factor activity involved in positive regulation of transcription Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase ii transcription regulatory region sequence-specific dna binding transcription factor activity involved in positive regulation of transcription molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase i regulatory region sequence-specific dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase i regulatory region sequence-specific dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

protein kinase a regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the protein kinase a regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

sequence-specific transcription regulatory region dna binding rna polymerase ii transcription factor recruiting transcription factor activity Gene Set

From GO Molecular Function Annotations 2015

genes performing the sequence-specific transcription regulatory region dna binding rna polymerase ii transcription factor recruiting transcription factor activity molecular function from the curated GO Molecular Function Annotations 2015 dataset.

regulatory region nucleic acid binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the regulatory region nucleic acid binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase ii regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase ii regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

rna polymerase ii intronic transcription regulatory region sequence-specific dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the rna polymerase ii intronic transcription regulatory region sequence-specific dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

transcription regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the transcription regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

phosphatidylinositol 3-kinase regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the phosphatidylinositol 3-kinase regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

intronic transcription regulatory region dna binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the intronic transcription regulatory region dna binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

cytoskeletal regulatory protein binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the cytoskeletal regulatory protein binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

purine-rich negative regulatory element binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the purine-rich negative regulatory element binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

Protein phosphatase 4 core regulatory subunit R2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 4 core regulatory subunit R2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1, regulatory subunit 16A/B Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1, regulatory subunit 16A/B protein domain from the InterPro Predicted Protein Domain Annotations dataset.

KAT8 regulatory NSL complex subunit 2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the KAT8 regulatory NSL complex subunit 2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Steroidogenic acute regulatory protein-like Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Steroidogenic acute regulatory protein-like protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1 regulatory subunit 36 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1 regulatory subunit 36 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Carboxypeptidase, regulatory domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Carboxypeptidase, regulatory domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Ribosomal biogenesis regulatory protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Ribosomal biogenesis regulatory protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome, regulatory subunit Rpn7 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome, regulatory subunit Rpn7 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

KAT8 regulatory NSL complex subunit 1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the KAT8 regulatory NSL complex subunit 1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Myelin gene regulatory factor C-terminal domain 1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Myelin gene regulatory factor C-terminal domain 1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Myelin gene regulatory factor C-terminal domain 2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Myelin gene regulatory factor C-terminal domain 2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Casein kinase II, regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Casein kinase II, regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

KAT8 regulatory NSL complex subunit 3/Testis-expressed sequence 30 protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the KAT8 regulatory NSL complex subunit 3/Testis-expressed sequence 30 protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Cyclin-dependent kinase, regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Cyclin-dependent kinase, regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Metal regulatory transcription factor 1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Metal regulatory transcription factor 1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Dolichol phosphate-mannose biosynthesis regulatory Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Dolichol phosphate-mannose biosynthesis regulatory protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome regulatory complex, non-ATPase subcomplex, Rpn1 subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome regulatory complex, non-ATPase subcomplex, Rpn1 subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Ion channel regulatory protein, UNC-93 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Ion channel regulatory protein, UNC-93 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome non-ATPase regulatory subunit 5 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome non-ATPase regulatory subunit 5 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1 regulatory subunit 35, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1 regulatory subunit 35, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

GTP cyclohydrolase I, feedback regulatory protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the GTP cyclohydrolase I, feedback regulatory protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Regulatory factor, effector binding domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Regulatory factor, effector binding domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Phosphoinositide 3-kinase regulatory subunit 5/6 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Phosphoinositide 3-kinase regulatory subunit 5/6 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Rab3-GAP regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Rab3-GAP regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Iron regulatory protein 1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Iron regulatory protein 1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 2A, regulatory subunit PR55 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 2A, regulatory subunit PR55 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Aspartate carbamoyltransferase regulatory subunit, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Aspartate carbamoyltransferase regulatory subunit, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor-3 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor-3 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Immunodeficiency virus transactivating regulatory protein (Tat) Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Immunodeficiency virus transactivating regulatory protein (Tat) protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 2A, regulatory B subunit, B56 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 2A, regulatory B subunit, B56 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1 regulatory subunit 3B/C/D, Metazoa Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1 regulatory subunit 3B/C/D, Metazoa protein domain from the InterPro Predicted Protein Domain Annotations dataset.

V-type ATP synthase regulatory subunit B/beta Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the V-type ATP synthase regulatory subunit B/beta protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Carboxypeptidase-like, regulatory domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Carboxypeptidase-like, regulatory domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

PI3 kinase, P85 regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the PI3 kinase, P85 regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1 regulatory subunit 26 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1 regulatory subunit 26 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Regulatory associated protein of TOR Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Regulatory associated protein of TOR protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome regulatory subunit, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome regulatory subunit, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor-1/2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor-1/2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Sterol regulatory element-binding protein cleavage-activating protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Sterol regulatory element-binding protein cleavage-activating protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Myelin gene regulatory factor Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Myelin gene regulatory factor protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Dimerization-anchoring domain of cAMP-dependent protein kinase, regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Dimerization-anchoring domain of cAMP-dependent protein kinase, regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome non-ATPase regulatory subunit Rpn12 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome non-ATPase regulatory subunit Rpn12 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

cAMP-dependent protein kinase regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the cAMP-dependent protein kinase regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor, conserved site Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor, conserved site protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1 regulatory subunit 12A/B, chordates Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1 regulatory subunit 12A/B, chordates protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Nitrogen regulatory PII-like, alpha/beta Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Nitrogen regulatory PII-like, alpha/beta protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor 5 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor 5 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Nuclear envelope phosphatase-regulatory subunit 1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Nuclear envelope phosphatase-regulatory subunit 1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Regulatory factor X-associated protein, RFXANK-binding domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Regulatory factor X-associated protein, RFXANK-binding domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Iron regulatory protein 2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Iron regulatory protein 2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Casein kinase II, regulatory subunit, beta-sheet Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Casein kinase II, regulatory subunit, beta-sheet protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Histidine-tRNA ligase/ATP phosphoribosyltransferase regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Histidine-tRNA ligase/ATP phosphoribosyltransferase regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Na(+)/H(+) exchange regulatory cofactor NHE-RF Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Na(+)/H(+) exchange regulatory cofactor NHE-RF protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Poly(ADP-ribose) polymerase, regulatory domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Poly(ADP-ribose) polymerase, regulatory domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Aconitate/iron regulatory protein 2 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Aconitate/iron regulatory protein 2 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 1, regulatory subunit 15A/B, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 1, regulatory subunit 15A/B, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein phosphatase 2A, regulatory subunit PR55, conserved site Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein phosphatase 2A, regulatory subunit PR55, conserved site protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Rab3GAP regulatory subunit, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Rab3GAP regulatory subunit, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Steroidogenic acute regulatory protein Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Steroidogenic acute regulatory protein protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Cell cycle regulatory protein, Spy1 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Cell cycle regulatory protein, Spy1 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor DNA-binding domain Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor DNA-binding domain protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Putative phosphatase regulatory subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Putative phosphatase regulatory subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Glucokinase regulatory protein, conserved site Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Glucokinase regulatory protein, conserved site protein domain from the InterPro Predicted Protein Domain Annotations dataset.

26S proteasome regulatory complex, non-ATPase subcomplex, Rpn2/Psmd1 subunit Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the 26S proteasome regulatory complex, non-ATPase subcomplex, Rpn2/Psmd1 subunit protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Interferon regulatory factor 2-binding protein 1 & 2, zinc finger Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Interferon regulatory factor 2-binding protein 1 & 2, zinc finger protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Casein kinase II, regulatory subunit, alpha-helical Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Casein kinase II, regulatory subunit, alpha-helical protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Adipose-regulatory protein, Seipin Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Adipose-regulatory protein, Seipin protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Dynein regulatory complex protein 1, C-terminal Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Dynein regulatory complex protein 1, C-terminal protein domain from the InterPro Predicted Protein Domain Annotations dataset.

abnormal cd4-positive, cd25-positive, alpha-beta regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal cd4-positive, cd25-positive, alpha-beta regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal cd4-positive, cd25-positive, alpha-beta regulatory t cell morphology Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal cd4-positive, cd25-positive, alpha-beta regulatory t cell morphology phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

increased regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the increased regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

decreased cd4-positive, cd25-positive, alpha-beta regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the decreased cd4-positive, cd25-positive, alpha-beta regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

decreased regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the decreased regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

absent regulatory t cells Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the absent regulatory t cells phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal regulatory t cell morphology Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal regulatory t cell morphology phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal regulatory t cell physiology Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal regulatory t cell physiology phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

abnormal regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the abnormal regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

increased cd4-positive, cd25-positive, alpha-beta regulatory t cell number Gene Set

From MPO Gene-Phenotype Associations

gene mutations causing the increased cd4-positive, cd25-positive, alpha-beta regulatory t cell number phenotype in transgenic mice from the MPO Gene-Phenotype Associations dataset.

Regulatory RNA pathways Gene Set

From Reactome Pathways 2014

proteins participating in the Regulatory RNA pathways pathway from the Reactome Pathways dataset.

Signal regulatory protein (SIRP) family interactions Gene Set

From Reactome Pathways 2014

proteins participating in the Signal regulatory protein (SIRP) family interactions pathway from the Reactome Pathways dataset.

Regulation of Glucokinase by Glucokinase Regulatory Protein Gene Set

From Reactome Pathways 2014

proteins participating in the Regulation of Glucokinase by Glucokinase Regulatory Protein pathway from the Reactome Pathways dataset.

regulatory t-lymphocyte Gene Set

From TISSUES Text-mining Tissue Protein Expression Evidence Scores

proteins co-occuring with the tissue regulatory t-lymphocyte in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.

regulatory dendritic cell Gene Set

From TISSUES Text-mining Tissue Protein Expression Evidence Scores

proteins co-occuring with the tissue regulatory dendritic cell in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.

Ptf1a related regulatory pathway(Mus musculus) Gene Set

From WikiPathways Pathways 2014

proteins participating in the Ptf1a related regulatory pathway(Mus musculus) pathway from the WikiPathways Pathways 2014 dataset.

Lymph_Node-regulatory t cell Gene Set

From Tabula Sapiens Gene-Cell Associations

genes with high or low expression in Lymph_Node-regulatory t cell relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.

Skin-regulatory t cell Gene Set

From Tabula Sapiens Gene-Cell Associations

genes with high or low expression in Skin-regulatory t cell relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.

Spleen-regulatory t cell Gene Set

From Tabula Sapiens Gene-Cell Associations

genes with high or low expression in Spleen-regulatory t cell relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.

Thymus-naive regulatory t cell Gene Set

From Tabula Sapiens Gene-Cell Associations

genes with high or low expression in Thymus-naive regulatory t cell relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.

Steroidogenic Acute Regulatory Protein Deficiency Gene Set

From DisGeNET Gene-Disease Associations

genes associated with the disease Steroidogenic Acute Regulatory Protein Deficiency in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.

Elevated Proportion Of Cd4-Negative, Cd8-Negative, Alpha-Beta Regulatory T Cells Gene Set

From DisGeNET Gene-Phenotype Associations

genes associated with the phenotype Elevated Proportion Of Cd4-Negative, Cd8-Negative, Alpha-Beta Regulatory T Cells in GWAS and other genetic association datasets from the DisGeNET Gene-Phenotype Associations dataset.

Reduced Proportion Of Cd4-Negative, Cd8-Negative, Alpha-Beta Regulatory T Cells Gene Set

From DisGeNET Gene-Phenotype Associations

genes associated with the phenotype Reduced Proportion Of Cd4-Negative, Cd8-Negative, Alpha-Beta Regulatory T Cells in GWAS and other genetic association datasets from the DisGeNET Gene-Phenotype Associations dataset.

positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response biological process from the curated GO Biological Process Annotations 2023 dataset.

proteasome regulatory particle assembly Gene Set

From GO Biological Process Annotations 2023

genes participating in the proteasome regulatory particle assembly biological process from the curated GO Biological Process Annotations 2023 dataset.

negative regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the negative regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

negative regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the negative regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment Gene Set

From GO Biological Process Annotations 2023

genes participating in the CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

negative regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the negative regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of regulatory ncRNA processing Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of regulatory ncRNA processing biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response biological process from the curated GO Biological Process Annotations 2023 dataset.

regulatory ncRNA processing Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulatory ncRNA processing biological process from the curated GO Biological Process Annotations 2023 dataset.

CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2023 dataset.

regulatory ncRNA 3'-end processing Gene Set

From GO Biological Process Annotations 2023

genes participating in the regulatory ncRNA 3'-end processing biological process from the curated GO Biological Process Annotations 2023 dataset.

RNA polymerase II cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase II cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

transcription cis-regulatory region binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the transcription cis-regulatory region binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase II transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase II transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

protein kinase A regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the protein kinase A regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase I cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase I cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase III transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase III transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

purine-rich negative regulatory element binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the purine-rich negative regulatory element binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

intronic transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the intronic transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

regulatory region RNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the regulatory region RNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

phosphatidylinositol 3-kinase regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the phosphatidylinositol 3-kinase regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

transcription regulatory region nucleic acid binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the transcription regulatory region nucleic acid binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

cytoskeletal regulatory protein binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the cytoskeletal regulatory protein binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

regulatory RNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the regulatory RNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase I transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase I transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

RNA polymerase III cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the RNA polymerase III cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

increased regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the increased regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal CD4-positive, CD25-positive, alpha-beta regulatory T cell morphology Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal CD4-positive, CD25-positive, alpha-beta regulatory T cell morphology phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal regulatory T cell physiology Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal regulatory T cell physiology phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

decreased regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the decreased regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

absent regulatory T cells Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the absent regulatory T cells phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

decreased CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the decreased CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal regulatory T cell morphology Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal regulatory T cell morphology phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

increased CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the increased CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

increased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the increased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

increased KLRG1-positive CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the increased KLRG1-positive CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

decreased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the decreased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

abnormal CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From MGI Mouse Phenotype Associations 2023

gene mutations causing the abnormal CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in transgenic mice from the MGI Mouse Phenotype Associations 2023 dataset.

increased CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the increased CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

increased KLRG1-positive CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the increased KLRG1-positive CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

increased regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the increased regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

decreased regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the decreased regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

increased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the increased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

decreased CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the decreased CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

decreased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number Gene Set

From IMPC Knockout Mouse Phenotypes

gene knockouts causing the decreased memory CD4-positive, CD25-positive, alpha-beta regulatory T cell number phenotype in mic from the IMPC Knockout Mouse Phenotypes dataset.

Human - PBMC - L2 - Regulatory T Gene Set

From HuBMAP Azimuth Cell Type Annotations

genes associated with the Human - PBMC - L2 - Regulatory T cell type from the HuBMAP Azimuth Cell Type Annotations dataset.

Human - PBMC - L3 - Memory Regulatory T Gene Set

From HuBMAP Azimuth Cell Type Annotations

genes associated with the Human - PBMC - L3 - Memory Regulatory T cell type from the HuBMAP Azimuth Cell Type Annotations dataset.

Human - PBMC - L3 - Naive Regulatory T Gene Set

From HuBMAP Azimuth Cell Type Annotations

genes associated with the Human - PBMC - L3 - Naive Regulatory T cell type from the HuBMAP Azimuth Cell Type Annotations dataset.

Regulatory T(Treg) cell_Airway_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Airway_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Arm_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Arm_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Arthrosis_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Arthrosis_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory chondrocyte_Articular Cartilage_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory chondrocyte_Articular Cartilage_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Ascites_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Ascites_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Foxp3+ regulatory T cell_Bile duct_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Foxp3+ regulatory T cell_Bile duct_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bile duct_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bile duct_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bladder_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bladder_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

CD4+CD25+ regulatory T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the CD4+CD25+ regulatory T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Effector regulatory T(eTreg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Effector regulatory T(eTreg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Induced regulatory T (Treg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Induced regulatory T (Treg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Naive regulatory T (Treg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Naive regulatory T (Treg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Natural regulatory T (Treg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Natural regulatory T (Treg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Induced regulatory T (Treg) cell_Peripheral blood_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Induced regulatory T (Treg) cell_Peripheral blood_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

FOXP3+ natural regulatory T (Treg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the FOXP3+ natural regulatory T (Treg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Natural regulatory T (Treg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Natural regulatory T (Treg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Blood_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Blood_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Induced regulatory T (Treg) cell_Blood_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Induced regulatory T (Treg) cell_Blood_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Memory regulatory T cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Memory regulatory T cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Activated regulatory T cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Activated regulatory T cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory natural killer cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory natural killer cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Activated CD25+ regulatory T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Activated CD25+ regulatory T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD25+ T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD25+ T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Peripheral blood_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Peripheral blood_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

TolDC-induced regulatory T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the TolDC-induced regulatory T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Natural regulatory T cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Natural regulatory T cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Ovalbumin-specific regulatory T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Ovalbumin-specific regulatory T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Tumor regulatory T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Tumor regulatory T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Blood_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Blood_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD4+ T cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD4+ T cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Effector regulatory T(eTreg) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Effector regulatory T(eTreg) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD4 T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD4 T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD4+ T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD4+ T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD8+ T cell_Peripheral blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD8+ T cell_Peripheral blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Follicular regulatory T(Tfr) cell_Blood_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Follicular regulatory T(Tfr) cell_Blood_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Blood vessel_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Blood vessel_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory chondrocyte_Meniscus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory chondrocyte_Meniscus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory chondrocyte_Cartilage_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory chondrocyte_Cartilage_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Bone marrow_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Bone marrow_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bone marrow_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bone marrow_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bone marrow_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bone marrow_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Memory regulatory T cell_Bone marrow_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Memory regulatory T cell_Bone marrow_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Brain_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Brain_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Brain_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Brain_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Brain_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Brain_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Cerebrospinal fluid_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Cerebrospinal fluid_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Breast_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Breast_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Breast_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Breast_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

B10 Regulatory B cell_Breast_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the B10 Regulatory B cell_Breast_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

GrB+ Regulatory B cell_Breast_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the GrB+ Regulatory B cell_Breast_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Esophagus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Esophagus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Eye_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Eye_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Gall bladder_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Gall bladder_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Stomach_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Stomach_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Gut_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Gut_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Heart_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Heart_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Effector regulatory T(eTreg) cell_Heart_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Effector regulatory T(eTreg) cell_Heart_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Heart_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Heart_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Colorectum_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Colorectum_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Duodenum_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Duodenum_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Colon_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Colon_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD4+ T cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD4+ T cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

GrB+ Regulatory B cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the GrB+ Regulatory B cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

IgA+ Regulatory B cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the IgA+ Regulatory B cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Rectum_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Rectum_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Effector regulatory T(eTreg) cell_Small intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Effector regulatory T(eTreg) cell_Small intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD8+ T cell_Small intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD8+ T cell_Small intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Small intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Small intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Colorectum_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Colorectum_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Eomesodermin homolog(EOMES)+ regulatory T cell type 1_Colorectum_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Eomesodermin homolog(EOMES)+ regulatory T cell type 1_Colorectum_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Colon_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Colon_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Gut_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Gut_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Follicular regulatory T(Tfr) cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Follicular regulatory T(Tfr) cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

CD4 peripherally derived regulatory T cell_Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the CD4 peripherally derived regulatory T cell_Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Large Intestine_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Large Intestine_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Large Intestine_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Large Intestine_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Kidney_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Kidney_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Kidney_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Kidney_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory innate lymphoid cell_Kidney_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory innate lymphoid cell_Kidney_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory innate lymphoid cell_Kidney_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory innate lymphoid cell_Kidney_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Kidney_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Kidney_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Liver_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Liver_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

TIM-1+ Regulatory B cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the TIM-1+ Regulatory B cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

PD-1hi Regulatory B cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the PD-1hi Regulatory B cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Suppressive regulatory T cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Suppressive regulatory T cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Resting regulatory T cell_Liver_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Resting regulatory T cell_Liver_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lung_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lung_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bronchus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bronchus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lung_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lung_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory endothelial cell_Lung_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory endothelial cell_Lung_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Bronchoalveolar lavage_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Bronchoalveolar lavage_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Tumor-infiltrating regulatory T cell_Lung_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Tumor-infiltrating regulatory T cell_Lung_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Eomesodermin homolog(EOMES)+ regulatory T cell type 1_Lung_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Eomesodermin homolog(EOMES)+ regulatory T cell type 1_Lung_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lymphoid tissue_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lymphoid tissue_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lymph node_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lymph node_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lymphoid tissue_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lymphoid tissue_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Lymph_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Lymph_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

CD4+CD25+ regulatory T cell_Lymphoid tissue_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the CD4+CD25+ regulatory T cell_Lymphoid tissue_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Nasal mucosa_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Nasal mucosa_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Nasopharynx_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Nasopharynx_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Vocal cord_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Vocal cord_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Sciatic nerve_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Sciatic nerve_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Nasal polyp_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Nasal polyp_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Polyp_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Polyp_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Oral cavity_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Oral cavity_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Ovary_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Ovary_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

GrB+ Regulatory B cell_Ovary_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the GrB+ Regulatory B cell_Ovary_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Pancreas_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Pancreas_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Pancreas_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Pancreas_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Pancreas_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Pancreas_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Pancreatic islet_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Pancreatic islet_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Pancreas_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Pancreas_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Peritoneal fluid_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Peritoneal fluid_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Placenta_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Placenta_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Prostate_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Prostate_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

GrB+ Regulatory B cell_Prostate_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the GrB+ Regulatory B cell_Prostate_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Salivary gland_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Salivary gland_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Skin_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Skin_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory M2-like Macrophage_Skin_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory M2-like Macrophage_Skin_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Scalp_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Scalp_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Skin_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Skin_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T cell 1_Skin_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T cell 1_Skin_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

T2-MZP Regulatory B cell_Skin_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the T2-MZP Regulatory B cell_Skin_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

PD-L1+ Regulatory B cell_Skin_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the PD-L1+ Regulatory B cell_Skin_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

CD4+CD25+ regulatory T cell_Spleen_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the CD4+CD25+ regulatory T cell_Spleen_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Spleen_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Spleen_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Spleen_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Spleen_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Spleen_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Spleen_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Spleen_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Spleen_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Activated regulatory T cell_Spleen_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Activated regulatory T cell_Spleen_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Stomach_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Stomach_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

B10 Regulatory B cell_Stomach_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the B10 Regulatory B cell_Stomach_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Malignant pleural effusion_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Malignant pleural effusion_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Thymus-derived regulatory T (Treg) cell_Thymus_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Thymus-derived regulatory T (Treg) cell_Thymus_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Thymus_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Thymus_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Thymus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Thymus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Thymus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Thymus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T (Treg) cell_Undefined_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T (Treg) cell_Undefined_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD4+ T cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD4+ T cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD8+ T cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD8+ T cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Effector regulatory T(eTreg) cell_Undefined_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Effector regulatory T(eTreg) cell_Undefined_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Undefined_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Undefined_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory B(Breg) cell_Undefined_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory B(Breg) cell_Undefined_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Central memory regulatory T(cTreg) cell_Undefined_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Central memory regulatory T(cTreg) cell_Undefined_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory myeloid_Undefined_Mouse Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory myeloid_Undefined_Mouse cell type from the CellMarker Gene-Cell Type Associations dataset.

B10 Regulatory B cell_Uterus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the B10 Regulatory B cell_Uterus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

GrB+ Regulatory B cell_Uterus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the GrB+ Regulatory B cell_Uterus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory T(Treg) cell_Endometrium_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory T(Treg) cell_Endometrium_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Regulatory CD8+ T cell_Uterus_Human Gene Set

From CellMarker Gene-Cell Type Associations

genes associated with the Regulatory CD8+ T cell_Uterus_Human cell type from the CellMarker Gene-Cell Type Associations dataset.

Sterol regulatory element binding proteins SREBP signaling Gene Set

From WikiPathways Pathways 2024

proteins participating in the Sterol regulatory element binding proteins SREBP signaling pathway from the WikiPathways Pathways 2024 dataset.

DDX1 as a regulatory component of the Drosha microprocessor Gene Set

From WikiPathways Pathways 2024

proteins participating in the DDX1 as a regulatory component of the Drosha microprocessor pathway from the WikiPathways Pathways 2024 dataset.

Angiopoietin like protein 8 regulatory pathway Gene Set

From WikiPathways Pathways 2024

proteins participating in the Angiopoietin like protein 8 regulatory pathway pathway from the WikiPathways Pathways 2024 dataset.

PTF1A related regulatory pathway Gene Set

From WikiPathways Pathways 2024

proteins participating in the PTF1A related regulatory pathway pathway from the WikiPathways Pathways 2024 dataset.

Regulatory circuits of STAT3 signaling Gene Set

From WikiPathways Pathways 2024

proteins participating in the Regulatory circuits of STAT3 signaling pathway from the WikiPathways Pathways 2024 dataset.

TROP2 regulatory signaling Gene Set

From WikiPathways Pathways 2024

proteins participating in the TROP2 regulatory signaling pathway from the WikiPathways Pathways 2024 dataset.

RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) Gene Set

From Reactome Pathways 2024

proteins participating in the RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) pathway from the Reactome Pathways 2024 dataset.

Regulation of Glucokinase by Glucokinase Regulatory Protein Gene Set

From Reactome Pathways 2024

proteins participating in the Regulation of Glucokinase by Glucokinase Regulatory Protein pathway from the Reactome Pathways 2024 dataset.

SARS-CoV-1 targets host intracellular signalling and regulatory pathways Gene Set

From Reactome Pathways 2024

proteins participating in the SARS-CoV-1 targets host intracellular signalling and regulatory pathways pathway from the Reactome Pathways 2024 dataset.

SARS-CoV-2 targets host intracellular signalling and regulatory pathways Gene Set

From Reactome Pathways 2024

proteins participating in the SARS-CoV-2 targets host intracellular signalling and regulatory pathways pathway from the Reactome Pathways 2024 dataset.

Signal regulatory protein family interactions Gene Set

From Reactome Pathways 2024

proteins participating in the Signal regulatory protein family interactions pathway from the Reactome Pathways 2024 dataset.

Spleen_CT1_T Follicular Regulatory Cell Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Spleen_CT1_T Follicular Regulatory Cell cell type from the HuBMAP ASCT+B dataset.

Spleen_CT1_T Regulatory Cell Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Spleen_CT1_T Regulatory Cell cell type from the HuBMAP ASCT+B dataset.

Blood_CT2_T regulatory Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Blood_CT2_T regulatory cell type from the HuBMAP ASCT+B dataset.

Lymph node_CT1_T Follicular Regulatory Cell Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Lymph node_CT1_T Follicular Regulatory Cell cell type from the HuBMAP ASCT+B dataset.

Lymph node_CT1_T Regulatory Cell Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Lymph node_CT1_T Regulatory Cell cell type from the HuBMAP ASCT+B dataset.

Bone marrow_CT2_T regulatory Gene Set

From HuBMAP ASCT+B Annotations

biomarker genes for the Bone marrow_CT2_T regulatory cell type from the HuBMAP ASCT+B dataset.

Blood_CT2_T regulatory Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Blood_CT2_T regulatory cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

Bone marrow_CT2_T regulatory Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Bone marrow_CT2_T regulatory cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

Lymph node_CT1_T Follicular Regulatory Cell Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Lymph node_CT1_T Follicular Regulatory Cell cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

Lymph node_CT1_T Regulatory Cell Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Lymph node_CT1_T Regulatory Cell cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

Spleen_CT1_T Follicular Regulatory Cell Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Spleen_CT1_T Follicular Regulatory Cell cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

Spleen_CT1_T Regulatory Cell Gene Set

From HuBMAP ASCT+B Augmented with RNA-seq Coexpression

biomarker genes for the Spleen_CT1_T Regulatory Cell cell type from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.

positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response biological process from the curated GO Biological Process Annotations 2025 dataset.

proteasome regulatory particle assembly Gene Set

From GO Biological Process Annotations 2025

genes participating in the proteasome regulatory particle assembly biological process from the curated GO Biological Process Annotations 2025 dataset.

negative regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory ncRNA-mediated gene silencing Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory ncRNA-mediated gene silencing biological process from the curated GO Biological Process Annotations 2025 dataset.

CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment Gene Set

From GO Biological Process Annotations 2025

genes participating in the CD4-positive, CD25-positive, alpha-beta regulatory T cell lineage commitment biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

negative regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

negative regulation of transcription regulatory region DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of transcription regulatory region DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

positive regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the positive regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory ncRNA-mediated post-transcriptional gene silencing Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory ncRNA-mediated post-transcriptional gene silencing biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory ncRNA-mediated heterochromatin formation Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory ncRNA-mediated heterochromatin formation biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of RNA polymerase II regulatory region sequence-specific DNA binding Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of RNA polymerase II regulatory region sequence-specific DNA binding biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of regulatory ncRNA processing Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of regulatory ncRNA processing biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory ncRNA processing Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory ncRNA processing biological process from the curated GO Biological Process Annotations 2025 dataset.

CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation Gene Set

From GO Biological Process Annotations 2025

genes participating in the CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation biological process from the curated GO Biological Process Annotations 2025 dataset.

negative regulation of post-transcriptional gene silencing by regulatory ncRNA Gene Set

From GO Biological Process Annotations 2025

genes participating in the negative regulation of post-transcriptional gene silencing by regulatory ncRNA biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of post-transcriptional gene silencing by regulatory ncRNA Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of post-transcriptional gene silencing by regulatory ncRNA biological process from the curated GO Biological Process Annotations 2025 dataset.

regulatory ncRNA 3'-end processing Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulatory ncRNA 3'-end processing biological process from the curated GO Biological Process Annotations 2025 dataset.

regulation of gene silencing by regulatory ncRNA Gene Set

From GO Biological Process Annotations 2025

genes participating in the regulation of gene silencing by regulatory ncRNA biological process from the curated GO Biological Process Annotations 2025 dataset.

RNA polymerase II cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase II cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

transcription cis-regulatory region binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the transcription cis-regulatory region binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase II transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase II transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

protein kinase A regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the protein kinase A regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase I cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase I cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase III transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase III transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

purine-rich negative regulatory element binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the purine-rich negative regulatory element binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

intronic transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the intronic transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase I transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase I transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase II intronic transcription regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

regulatory region RNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the regulatory region RNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

phosphatidylinositol 3-kinase regulatory subunit binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the phosphatidylinositol 3-kinase regulatory subunit binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

cytoskeletal regulatory protein binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the cytoskeletal regulatory protein binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

regulatory RNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the regulatory RNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

RNA polymerase III cis-regulatory region sequence-specific DNA binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the RNA polymerase III cis-regulatory region sequence-specific DNA binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

Regulatory T-lymphocyte Gene Set

From TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025

proteins co-occuring with the tissue Regulatory T-lymphocyte in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.

Regulatory dendritic cell Gene Set

From TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025

proteins co-occuring with the tissue Regulatory dendritic cell in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.

Proteasome regulatory particle Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Proteasome regulatory particle cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Proteasome regulatory particle, lid subcomplex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Proteasome regulatory particle, lid subcomplex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Proteasome regulatory particle, base subcomplex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Proteasome regulatory particle, base subcomplex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Interferon regulatory factor 5 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor 5 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Interferon regulatory factor 7 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor 7 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Interferon regulatory factor complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Proteasome regulatory particle Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Proteasome regulatory particle cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Proteasome regulatory particle, lid subcomplex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Proteasome regulatory particle, lid subcomplex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Kelch-containing formin regulatory complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Kelch-containing formin regulatory complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Actin cytoskeleton-regulatory complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Actin cytoskeleton-regulatory complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Proteasome regulatory particle, base subcomplex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Proteasome regulatory particle, base subcomplex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Interferon regulatory factor 3 complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Interferon regulatory factor 3 complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

neuroregulin receptor degredation protein-1 controls erbb3 receptor recycling Gene Set

From Biocarta Pathways

proteins participating in the neuroregulin receptor degredation protein-1 controls erbb3 receptor recycling pathway from the Biocarta Pathways dataset.

toll-like receptor 2-toll-like receptor 6 protein complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the toll-like receptor 2-toll-like receptor 6 protein complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

toll-like receptor 1-toll-like receptor 2 protein complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the toll-like receptor 1-toll-like receptor 2 protein complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

TGF-beta receptor II-TGF-beta receptor I-TGF-beta3 complex Gene Set

From CORUM Protein Complexes

proteins in the TGF-beta receptor II-TGF-beta receptor I-TGF-beta3 complex protein complex from the CORUM Protein Complexes dataset.

TGF-beta receptor II-TGF-beta receptor I-TGF-beta1 complex Gene Set

From CORUM Protein Complexes

proteins in the TGF-beta receptor II-TGF-beta receptor I-TGF-beta1 complex protein complex from the CORUM Protein Complexes dataset.

epidermal growth factor-activated receptor transactivation by g-protein coupled receptor signaling pathway Gene Set

From GO Biological Process Annotations 2015

genes participating in the epidermal growth factor-activated receptor transactivation by g-protein coupled receptor signaling pathway biological process from the curated GO Biological Process Annotations 2015 dataset.

toll-like receptor 2-toll-like receptor 6 protein complex Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the toll-like receptor 2-toll-like receptor 6 protein complex cellular component from the curated GO Cellular Component Annotations 2015 dataset.

toll-like receptor 1-toll-like receptor 2 protein complex Gene Set

From GO Cellular Component Annotations 2015

proteins localized to the toll-like receptor 1-toll-like receptor 2 protein complex cellular component from the curated GO Cellular Component Annotations 2015 dataset.

receptor tyrosine kinase-like orphan receptor binding Gene Set

From GO Molecular Function Annotations 2015

genes performing the receptor tyrosine kinase-like orphan receptor binding molecular function from the curated GO Molecular Function Annotations 2015 dataset.

G protein-coupled receptor 40-related receptor Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the G protein-coupled receptor 40-related receptor protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein-tyrosine phosphatase, receptor/non-receptor type Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein-tyrosine phosphatase, receptor/non-receptor type protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Gamma-aminobutyric acid A receptor/Glycine receptor alpha Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Gamma-aminobutyric acid A receptor/Glycine receptor alpha protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Oestrogen receptor/oestrogen-related receptor Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Oestrogen receptor/oestrogen-related receptor protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Protein-tyrosine phosphatase, receptor type R/non-receptor type 5 Gene Set

From InterPro Predicted Protein Domain Annotations

proteins predicted to have the Protein-tyrosine phosphatase, receptor type R/non-receptor type 5 protein domain from the InterPro Predicted Protein Domain Annotations dataset.

Receptor-ligand binding initiates the second proteolytic cleavage of Notch receptor Gene Set

From Reactome Pathways 2014

proteins participating in the Receptor-ligand binding initiates the second proteolytic cleavage of Notch receptor pathway from the Reactome Pathways dataset.

cross-receptor inhibition within G protein-coupled receptor heterodimer Gene Set

From GO Biological Process Annotations 2023

genes participating in the cross-receptor inhibition within G protein-coupled receptor heterodimer biological process from the curated GO Biological Process Annotations 2023 dataset.

Toll-like receptor 1-Toll-like receptor 2 protein complex Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the Toll-like receptor 1-Toll-like receptor 2 protein complex cellular component from the curated GO Cellular Component Annotations 2023 dataset.

Toll-like receptor 2-Toll-like receptor 6 protein complex Gene Set

From GO Cellular Component Annotations 2023

proteins localized to the Toll-like receptor 2-Toll-like receptor 6 protein complex cellular component from the curated GO Cellular Component Annotations 2023 dataset.

receptor-receptor interaction Gene Set

From GO Molecular Function Annotations 2023

genes performing the receptor-receptor interaction molecular function from the curated GO Molecular Function Annotations 2023 dataset.

receptor tyrosine kinase-like orphan receptor binding Gene Set

From GO Molecular Function Annotations 2023

genes performing the receptor tyrosine kinase-like orphan receptor binding molecular function from the curated GO Molecular Function Annotations 2023 dataset.

cross-receptor inhibition within G protein-coupled receptor heterodimer Gene Set

From GO Biological Process Annotations 2025

genes participating in the cross-receptor inhibition within G protein-coupled receptor heterodimer biological process from the curated GO Biological Process Annotations 2025 dataset.

Toll-like receptor 1-Toll-like receptor 2 protein complex Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the Toll-like receptor 1-Toll-like receptor 2 protein complex cellular component from the curated GO Cellular Component Annotations 2025 dataset.

Toll-like receptor 2-Toll-like receptor 6 protein complex Gene Set

From GO Cellular Component Annotations 2025

proteins localized to the Toll-like receptor 2-Toll-like receptor 6 protein complex cellular component from the curated GO Cellular Component Annotations 2025 dataset.

receptor-receptor interaction Gene Set

From GO Molecular Function Annotations 2025

genes performing the receptor-receptor interaction molecular function from the curated GO Molecular Function Annotations 2025 dataset.

receptor tyrosine kinase-like orphan receptor binding Gene Set

From GO Molecular Function Annotations 2025

genes performing the receptor tyrosine kinase-like orphan receptor binding molecular function from the curated GO Molecular Function Annotations 2025 dataset.

Toll-like receptor 1-Toll-like receptor 2 protein complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Toll-like receptor 1-Toll-like receptor 2 protein complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Toll-like receptor 2-Toll-like receptor 6 protein complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores 2025

proteins localized to the Toll-like receptor 2-Toll-like receptor 6 protein complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.

Toll-like receptor 1-Toll-like receptor 2 protein complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Toll-like receptor 1-Toll-like receptor 2 protein complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

Toll-like receptor 2-Toll-like receptor 6 protein complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025

proteins co-occuring with the Toll-like receptor 2-Toll-like receptor 6 protein complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.

pelp1 modulation of estrogen receptor activity Gene Set

From Biocarta Pathways

proteins participating in the pelp1 modulation of estrogen receptor activity pathway from the Biocarta Pathways dataset.

cystic fibrosis transmembrane conductance regulator (cftr) and beta 2 adrenergic receptor (b2ar) pathway Gene Set

From Biocarta Pathways

proteins participating in the cystic fibrosis transmembrane conductance regulator (cftr) and beta 2 adrenergic receptor (b2ar) pathway pathway from the Biocarta Pathways dataset.

control of gene expression by vitamin d receptor Gene Set

From Biocarta Pathways

proteins participating in the control of gene expression by vitamin d receptor pathway from the Biocarta Pathways dataset.

t cell receptor signaling pathway Gene Set

From Biocarta Pathways

proteins participating in the t cell receptor signaling pathway pathway from the Biocarta Pathways dataset.

role of egf receptor transactivation by gpcrs in cardiac hypertrophy Gene Set

From Biocarta Pathways

proteins participating in the role of egf receptor transactivation by gpcrs in cardiac hypertrophy pathway from the Biocarta Pathways dataset.

carm1 and regulation of the estrogen receptor Gene Set

From Biocarta Pathways

proteins participating in the carm1 and regulation of the estrogen receptor pathway from the Biocarta Pathways dataset.

the igf-1 receptor and longevity Gene Set

From Biocarta Pathways

proteins participating in the the igf-1 receptor and longevity pathway from the Biocarta Pathways dataset.

toll-like receptor pathway Gene Set

From Biocarta Pathways

proteins participating in the toll-like receptor pathway pathway from the Biocarta Pathways dataset.

sonic hedgehog receptor ptc1 regulates cell cycle Gene Set

From Biocarta Pathways

proteins participating in the sonic hedgehog receptor ptc1 regulates cell cycle pathway from the Biocarta Pathways dataset.

activation of csk by camp-dependent protein kinase inhibits signaling through the t cell receptor Gene Set

From Biocarta Pathways

proteins participating in the activation of csk by camp-dependent protein kinase inhibits signaling through the t cell receptor pathway from the Biocarta Pathways dataset.

gamma-aminobutyric acid receptor life cycle pathway Gene Set

From Biocarta Pathways

proteins participating in the gamma-aminobutyric acid receptor life cycle pathway pathway from the Biocarta Pathways dataset.

il22 soluble receptor signaling pathway Gene Set

From Biocarta Pathways

proteins participating in the il22 soluble receptor signaling pathway pathway from the Biocarta Pathways dataset.

fc epsilon receptor i signaling in mast cells Gene Set

From Biocarta Pathways

proteins participating in the fc epsilon receptor i signaling in mast cells pathway from the Biocarta Pathways dataset.

il-2 receptor beta chain in t cell activation Gene Set

From Biocarta Pathways

proteins participating in the il-2 receptor beta chain in t cell activation pathway from the Biocarta Pathways dataset.

trka receptor signaling pathway Gene Set

From Biocarta Pathways

proteins participating in the trka receptor signaling pathway pathway from the Biocarta Pathways dataset.

TNF receptor-associated periodic fever syndrome (TRAPS) Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the TNF receptor-associated periodic fever syndrome (TRAPS) phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Interferon gamma receptor deficiency Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Interferon gamma receptor deficiency phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

Myasthenic syndrome, congenital, associated with acetylcholine receptor deficiency Gene Set

From ClinVar Gene-Phenotype Associations

genes associated with the Myasthenic syndrome, congenital, associated with acetylcholine receptor deficiency phenotype from the curated ClinVar Gene-Phenotype Associations dataset.

interleukin-5 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-5 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

aryl hydrocarbon receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the aryl hydrocarbon receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-12 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-12 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

fc-epsilon receptor i complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the fc-epsilon receptor i complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

lipopolysaccharide receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the lipopolysaccharide receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

activin receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the activin receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-28 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-28 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

oncostatin-m receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the oncostatin-m receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

t cell receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the t cell receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

ionotropic glutamate receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the ionotropic glutamate receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid selective glutamate receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid selective glutamate receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

cytosolic aryl hydrocarbon receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the cytosolic aryl hydrocarbon receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

zona pellucida receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the zona pellucida receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

alpha-beta t cell receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the alpha-beta t cell receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-1 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-1 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

n-methyl-d-aspartate selective glutamate receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the n-methyl-d-aspartate selective glutamate receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

semaphorin receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the semaphorin receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-18 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-18 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

transforming growth factor beta receptor homodimeric complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the transforming growth factor beta receptor homodimeric complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-6 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-6 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

ciliary neurotrophic factor receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the ciliary neurotrophic factor receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

g-protein coupled receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the g-protein coupled receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

growth hormone receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the growth hormone receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

b cell receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the b cell receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

g-protein coupled receptor heterodimeric complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the g-protein coupled receptor heterodimeric complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

g-protein coupled receptor dimeric complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the g-protein coupled receptor dimeric complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

cd40 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the cd40 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

signal recognition particle receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the signal recognition particle receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

granulocyte macrophage colony-stimulating factor receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the granulocyte macrophage colony-stimulating factor receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

g-protein coupled receptor homodimeric complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the g-protein coupled receptor homodimeric complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-13 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-13 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

macrophage migration inhibitory factor receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the macrophage migration inhibitory factor receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

insulin receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the insulin receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

kainate selective glutamate receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the kainate selective glutamate receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

fc receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the fc receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-23 receptor complex Gene Set

From COMPARTMENTS Curated Protein Localization Evidence Scores

proteins localized to the interleukin-23 receptor complex cellular component from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.

interleukin-4 receptor complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the interleukin-4 receptor complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.

interleukin-5 receptor complex Gene Set

From COMPARTMENTS Text-mining Protein Localization Evidence Scores

proteins co-occuring with the interleukin-5 receptor complex cellular component in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.