Name | golgin A8 family, member Q |
Description | Predicted to be involved in Golgi organization. Predicted to be located in Golgi apparatus. Predicted to be active in Golgi cis cisterna; Golgi cisterna membrane; and cis-Golgi network. [provided by Alliance of Genome Resources, Mar 2025] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nA review of the provided studies reveals a broad investigation into proteins and pathways central to neurodegenerative disorders, cytoskeletal regulation, and cellular signaling. Several reports focus on neurodegeneration in late‐infantile neuronal ceroid lipofuscinosis (LINCL), demonstrating that mutations in the CLN2 gene lead to a deficiency in the lysosomal protease tripeptidyl‐peptidase I (TPP‐I), with consequent neuronal storage defects and premature cell loss (for example."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "8"}]}, {"type": "t", "text": " Other studies delineate the role of microtubule (MT) plus end‐tracking proteins—including the well‐characterized CLIP‐170—in modulating MT dynamics, which is essential for processes such as axonal guidance, cell migration, and synaptic function."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "9", "end_ref": "16"}]}, {"type": "t", "text": " \n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nComplementary work has addressed regulatory molecules—such as WBP2 and AMPK—and their interplay with oncogenic pathways as well as with neurodevelopment and metabolic regulation."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "17", "end_ref": "21"}]}, {"type": "t", "text": " Despite the substantial insights these studies provide into lysosomal function, MT dynamics, and associated signaling pathways, none of the reports offer data or discussion regarding the gene GOLGA8Q. Therefore, while the collective literature advances our understanding of enzymes such as TPP‐I and regulators like CLIP‐170 in health and disease, the specific cellular function of GOLGA8Q remains uncharacterized and warrants targeted future research.\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "David E Sleat, Jennifer A Wiseman, Mukarram El-Banna, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Neurosci (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1523/JNEUROSCI.2729-04.2004"}], "href": "https://doi.org/10.1523/JNEUROSCI.2729-04.2004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15483130"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15483130"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Dolan Sondhi, Daniel A Peterson, Andrew M Edelstein, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Neurol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.expneurol.2008.04.022"}], "href": "https://doi.org/10.1016/j.expneurol.2008.04.022"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18639872"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18639872"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "David E Sleat, Mukarram El-Banna, Istvan Sohar, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Residual levels of tripeptidyl-peptidase I activity dramatically ameliorate disease in late-infantile neuronal ceroid lipofuscinosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Genet Metab (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ymgme.2008.01.014"}], "href": "https://doi.org/10.1016/j.ymgme.2008.01.014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18343701"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18343701"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Francesca Bernardini, Michael J Warburton "}, {"type": "b", "children": [{"type": "t", "text": "Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem J (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1042/BJ20020467"}], "href": "https://doi.org/10.1042/BJ20020467"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12038963"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12038963"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Sharmila Kopan, Uthayatharsini Sivasubramaniam, Michael J Warburton "}, {"type": "b", "children": [{"type": "t", "text": "The lysosomal degradation of neuromedin B is dependent on tripeptidyl peptidase-I: evidence for the impairment of neuropeptide degradation in late-infantile neuronal ceroid lipofuscinosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2004.04.142"}], "href": "https://doi.org/10.1016/j.bbrc.2004.04.142"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15158442"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15158442"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Mashenka Dimitrova, Denislava Deleva, Velichka Pavlova, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Developmental study of tripeptidyl peptidase I activity in the mouse central nervous system and peripheral organs."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Tissue Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00441-011-1252-0"}], "href": "https://doi.org/10.1007/s00441-011-1252-0"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21996941"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21996941"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Kwi-Hye Kim, Christine T Pham, David E Sleat, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Dipeptidyl-peptidase I does not functionally compensate for the loss of tripeptidyl-peptidase I in the neurodegenerative disease late-infantile neuronal ceroid lipofuscinosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem J (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1042/BJ20080411"}], "href": "https://doi.org/10.1042/BJ20080411"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18570628"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18570628"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "David E Sleat, Whitney Banach-Petrosky, Katherine E Larrimore, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Inherit Metab Dis (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jimd.12619"}], "href": "https://doi.org/10.1002/jimd.12619"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37078466"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37078466"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Katharina A Dragestein, Wiggert A van Cappellen, Jeffrey van Haren, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.200707203"}], "href": "https://doi.org/10.1083/jcb.200707203"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18283108"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18283108"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Ho-Sup Lee, Yulia A Komarova, Elena S Nadezhdina, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Phosphorylation controls autoinhibition of cytoplasmic linker protein-170."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.e09-12-1036"}], "href": "https://doi.org/10.1091/mbc.e09-12-1036"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20519438"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20519438"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Marcelo G Binker, Dorothy Y Zhao, Sophie J Y Pang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cytoplasmic linker protein-170 enhances spreading and phagocytosis in activated macrophages by stabilizing microtubules."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.179.6.3780"}], "href": "https://doi.org/10.4049/jimmunol.179.6.3780"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17785815"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17785815"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Padmaja Jakka, Bindu Bhargavi, Swapna Namani, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cytoplasmic Linker Protein CLIP170 Negatively Regulates TLR4 Signaling by Targeting the TLR Adaptor Protein TIRAP."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.1601559"}], "href": "https://doi.org/10.4049/jimmunol.1601559"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29222167"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29222167"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Robin Beaven, Nikola S Dzhindzhev, Yue Qu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.E14-06-1083"}], "href": "https://doi.org/10.1091/mbc.E14-06-1083"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25694447"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25694447"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Shohei Yashirogi, Takemasa Nagao, Yuya Nishida, et al. "}, {"type": "b", "children": [{"type": "t", "text": "AMPK regulates cell shape of cardiomyocytes by modulating turnover of microtubules through CLIP-170."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.15252/embr.202050949"}], "href": "https://doi.org/10.15252/embr.202050949"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33251722"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33251722"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Isabella Barbiero, Erica Zamberletti, Marco Tramarin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pregnenolone-methyl-ether enhances CLIP170 and microtubule functions improving spine maturation and hippocampal deficits related to CDKL5 deficiency."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddac067"}], "href": "https://doi.org/10.1093/hmg/ddac067"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35348691"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35348691"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Binyuan Ma, Yaxin Xu, Hongwei Gao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "CLIP170 inhibits the metastasis and EMT of papillary thyroid cancer through the TGF-β pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Med Oncol (2024)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s12032-024-02355-z"}], "href": "https://doi.org/10.1007/s12032-024-02355-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "38705933"}], "href": "https://pubmed.ncbi.nlm.nih.gov/38705933"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Shen Kiat Lim, Magali Orhant-Prioux, Weiyi Toy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FASEB J (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1096/fj.10-169136"}], "href": "https://doi.org/10.1096/fj.10-169136"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21642474"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21642474"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Arunava Ghosh, Grant T Corbett, Frank J Gonzalez, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Gemfibrozil and fenofibrate, Food and Drug Administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile Batten disease therapy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M112.365148"}], "href": "https://doi.org/10.1074/jbc.M112.365148"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22989886"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22989886"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Zhe Zheng, Yue Li, Siyuan Fan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "WW domain-binding protein 2 overexpression prevents diet-induced liver steatosis and insulin resistance through AMPKβ1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Dis (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41419-021-03536-8"}], "href": "https://doi.org/10.1038/s41419-021-03536-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33658485"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33658485"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Hélène Henrie, Dalal Bakhos-Douaihy, Isabelle Cantaloube, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.201909093"}], "href": "https://doi.org/10.1083/jcb.201909093"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32491151"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32491151"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "A-L Fabritius, J Vesa, H M Minye, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Neuronal ceroid lipofuscinosis genes, CLN2, CLN3 and CLN5 are spatially and temporally co-expressed in a developing mouse brain."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Mol Pathol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.yexmp.2014.10.003"}], "href": "https://doi.org/10.1016/j.yexmp.2014.10.003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25303899"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25303899"}]}]}]}
|
NCBI Gene ID | 727909 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
GOLGA8Q has 645 functional associations with biological entities spanning 6 categories (functional term, phrase or reference, disease, phenotype or trait, chemical, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 20 datasets.
Click the + buttons to view associations for GOLGA8Q from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing GOLGA8Q protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with GOLGA8Q protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with GOLGA8Q gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with GOLGA8Q gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
GO Biological Process Annotations 2023 | biological processes involving GOLGA8Q gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving GOLGA8Q gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing GOLGA8Q protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing GOLGA8Q protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GTEx eQTL 2025 | SNPs regulating expression of GOLGA8Q gene from the GTEx eQTL 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of GOLGA8Q gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of GOLGA8Q gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of GOLGA8Q gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of GOLGA8Q gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of GOLGA8Q gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of GOLGA8Q gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of GOLGA8Q gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of GOLGA8Q gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of GOLGA8Q gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with GOLGA8Q protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |
WikiPathways Pathways 2024 | pathways involving GOLGA8Q protein from the WikiPathways Pathways 2024 dataset. | |