HGNC Family | Lectins, galactoside-binding (LGALS) |
Name | lectin, galactoside-binding, soluble, 4 |
Description | The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. The expression of this gene is restricted to small intestine, colon, and rectum, and it is underexpressed in colorectal cancer. [provided by RefSeq, Jul 2008] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\n A careful review of the provided literature (1–50) reveals that, although these studies address a wide spectrum of cellular mechanisms—including protein aggregation in neurodegeneration, metabolic reprogramming in cancer, epigenetic and transcriptional regulation, stress‐response signaling, and quality control pathways—none of them report any experimental data or discussion regarding LGALS4 (galectin‑4). In other words, despite the diversity of processes explored, there is no information within these abstracts that defines or characterizes the function of LGALS4. Consequently, no summary of LGALS4’s roles (for example, in cell adhesion, signal modulation, or other galectin‑4–associated activities) can be derived from this collection. More targeted studies would be required to elucidate the biological functions and regulatory mechanisms of LGALS4.\n "}]}, {"type": "t", "text": "\n "}, {"type": "p", "children": [{"type": "t", "text": "\n References:."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "50"}]}, {"type": "t", "text": ""}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Hong Joo Kim, Nam Chul Kim, Yong-Dong Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature11922"}], "href": "https://doi.org/10.1038/nature11922"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23455423"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23455423"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Weibo Luo, Hongxia Hu, Ryan Chang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2011.03.054"}], "href": "https://doi.org/10.1016/j.cell.2011.03.054"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21620138"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21620138"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Kyoko L Yap, Side Li, Ana M Muñoz-Cabello, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2010.03.021"}], "href": "https://doi.org/10.1016/j.molcel.2010.03.021"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20541999"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20541999"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Tomoshige Kino, Darrell E Hurt, Takamasa Ichijo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Signal (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/scisignal.2000568"}], "href": "https://doi.org/10.1126/scisignal.2000568"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20124551"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20124551"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Christine C Hudson, Mei Liu, Gary G Chiang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.22.20.7004-7014.2002"}], "href": "https://doi.org/10.1128/MCB.22.20.7004-7014.2002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12242281"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12242281"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Katherine A Fitzgerald, Daniel C Rowe, Betsy J Barnes, et al. "}, {"type": "b", "children": [{"type": "t", "text": "LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20031023"}], "href": "https://doi.org/10.1084/jem.20031023"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "14517278"}], "href": "https://pubmed.ncbi.nlm.nih.gov/14517278"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Lisa Ann Cirillo, Frank Robert Lin, Isabel Cuesta, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s1097-2765(02)00459-8"}], "href": "https://doi.org/10.1016/s1097-2765(02"}, {"type": "t", "text": "00459-8) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11864602"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11864602"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Xinnan Wang, Dominic Winter, Ghazaleh Ashrafi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2011.10.018"}], "href": "https://doi.org/10.1016/j.cell.2011.10.018"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22078885"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22078885"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "S Y Lin, K Makino, W Xia, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nuclear localization of EGF receptor and its potential new role as a transcription factor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2001)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb0901-802"}], "href": "https://doi.org/10.1038/ncb0901-802"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11533659"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11533659"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Aparna Purushotham, Thaddeus T Schug, Qing Xu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Metab (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cmet.2009.02.006"}], "href": "https://doi.org/10.1016/j.cmet.2009.02.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19356714"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19356714"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Alexandra Naba, Karl R Clauser, Sebastian Hoersch, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Proteomics (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/mcp.M111.014647"}], "href": "https://doi.org/10.1074/mcp.M111.014647"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22159717"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22159717"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Kristine Williams, Jesper Christensen, Marianne Terndrup Pedersen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature10066"}], "href": "https://doi.org/10.1038/nature10066"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21490601"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21490601"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Isaia Barbieri, Konstantinos Tzelepis, Luca Pandolfini, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Promoter-bound METTL3 maintains myeloid leukaemia by m"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "6"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": "A-dependent translation control."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature24678"}], "href": "https://doi.org/10.1038/nature24678"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29186125"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29186125"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Ke Zhang, Christopher J Donnelly, Aaron R Haeusler, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The C9orf72 repeat expansion disrupts nucleocytoplasmic transport."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature14973"}], "href": "https://doi.org/10.1038/nature14973"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26308891"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26308891"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Joo-Ho Shin, Han Seok Ko, Hochul Kang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2011.02.010"}], "href": "https://doi.org/10.1016/j.cell.2011.02.010"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21376232"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21376232"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Raphael Margueron, Guohong Li, Kavitha Sarma, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2008.11.004"}], "href": "https://doi.org/10.1016/j.molcel.2008.11.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19026781"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19026781"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Brian D Freibaum, Yubing Lu, Rodrigo Lopez-Gonzalez, et al. "}, {"type": "b", "children": [{"type": "t", "text": "GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature14974"}], "href": "https://doi.org/10.1038/nature14974"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26308899"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26308899"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Laura Bordone, Maria Carla Motta, Frederic Picard, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pbio.0040031"}], "href": "https://doi.org/10.1371/journal.pbio.0040031"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16366736"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16366736"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Peng Jiang, Wenjing Du, Xingwu Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb2172"}], "href": "https://doi.org/10.1038/ncb2172"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21336310"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21336310"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Madhumita Das, Chen Zhu, Vijay K Kuchroo "}, {"type": "b", "children": [{"type": "t", "text": "Tim-3 and its role in regulating anti-tumor immunity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunol Rev (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/imr.12520"}], "href": "https://doi.org/10.1111/imr.12520"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28258697"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28258697"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Qian Zhang, Kai Zhao, Qicong Shen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature15252"}], "href": "https://doi.org/10.1038/nature15252"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26287468"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26287468"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Sarah Mizielinska, Sebastian Grönke, Teresa Niccoli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Science (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/science.1256800"}], "href": "https://doi.org/10.1126/science.1256800"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25103406"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25103406"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Peter J Skene, Robert S Illingworth, Shaun Webb, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2010.01.030"}], "href": "https://doi.org/10.1016/j.molcel.2010.01.030"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20188665"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20188665"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Jeannette M Osterloh, Jing Yang, Timothy M Rooney, et al. "}, {"type": "b", "children": [{"type": "t", "text": "dSarm/Sarm1 is required for activation of an injury-induced axon death pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Science (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/science.1223899"}], "href": "https://doi.org/10.1126/science.1223899"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22678360"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22678360"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "S Chowdhry, Y Zhang, M McMahon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncogene (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/onc.2012.388"}], "href": "https://doi.org/10.1038/onc.2012.388"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22964642"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22964642"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Nael H Alami, Rebecca B Smith, Monica A Carrasco, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neuron (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.neuron.2013.12.018"}], "href": "https://doi.org/10.1016/j.neuron.2013.12.018"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24507191"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24507191"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "David A MacLeod, Herve Rhinn, Tomoki Kuwahara, et al. "}, {"type": "b", "children": [{"type": "t", "text": "RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neuron (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.neuron.2012.11.033"}], "href": "https://doi.org/10.1016/j.neuron.2012.11.033"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23395371"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23395371"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "David Sprinzak, Amit Lakhanpal, Lauren Lebon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cis-interactions between Notch and Delta generate mutually exclusive signalling states."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature08959"}], "href": "https://doi.org/10.1038/nature08959"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20418862"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20418862"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Xiaodong Feng, Maria Sol Degese, Ramiro Iglesias-Bartolome, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Cell (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ccr.2014.04.016"}], "href": "https://doi.org/10.1016/j.ccr.2014.04.016"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24882515"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24882515"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Feng Yin, Jianzhong Yu, Yonggang Zheng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2013.08.025"}], "href": "https://doi.org/10.1016/j.cell.2013.08.025"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24012335"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24012335"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Bo Li, Bo Qiu, David S M Lee, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fructose-1,6-bisphosphatase opposes renal carcinoma progression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature13557"}], "href": "https://doi.org/10.1038/nature13557"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25043030"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25043030"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Simon G Gregory, Jessica J Connelly, Aaron J Towers, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genomic and epigenetic evidence for oxytocin receptor deficiency in autism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Med (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1741-7015-7-62"}], "href": "https://doi.org/10.1186/1741-7015-7-62"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19845972"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19845972"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Kimberly Burns, Sophie Janssens, Brian Brissoni, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20021790"}], "href": "https://doi.org/10.1084/jem.20021790"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12538665"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12538665"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Philippe Blache, Marc van de Wetering, Isabelle Duluc, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.200311021"}], "href": "https://doi.org/10.1083/jcb.200311021"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15240568"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15240568"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Ben Yue, Chenlong Song, Linxi Yang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cancer (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/s12943-019-1065-4"}], "href": "https://doi.org/10.1186/s12943-019-1065-4"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31607270"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31607270"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Changtao Jiang, Cen Xie, Ying Lv, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms10166"}], "href": "https://doi.org/10.1038/ncomms10166"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26670557"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26670557"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "J H Xiao, I Davidson, H Matthes, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (1991)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/0092-8674(91)90088-g"}], "href": "https://doi.org/10.1016/0092-8674(91"}, {"type": "t", "text": "90088-g) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "1851669"}], "href": "https://pubmed.ncbi.nlm.nih.gov/1851669"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Jian Shi, Yifan Wang, Lei Zeng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Cell (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ccr.2014.01.028"}], "href": "https://doi.org/10.1016/j.ccr.2014.01.028"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24525235"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24525235"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Tomokazu Murakawa, Osamu Yamaguchi, Ayako Hashimoto, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms8527"}], "href": "https://doi.org/10.1038/ncomms8527"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26146385"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26146385"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Thomas Trimarchi, Erhan Bilal, Panagiotis Ntziachristos, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2014.05.049"}], "href": "https://doi.org/10.1016/j.cell.2014.05.049"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25083870"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25083870"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Jianmin Zhang, Jun-Yuan Ji, Min Yu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1993"}], "href": "https://doi.org/10.1038/ncb1993"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19935651"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19935651"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Silvina Epsztejn-Litman, Nirit Feldman, Monther Abu-Remaileh, et al. "}, {"type": "b", "children": [{"type": "t", "text": "De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Struct Mol Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nsmb.1476"}], "href": "https://doi.org/10.1038/nsmb.1476"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18953337"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18953337"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "Maria Filimonenko, Pauline Isakson, Kim D Finley, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2010.04.007"}], "href": "https://doi.org/10.1016/j.molcel.2010.04.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20417604"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20417604"}]}, {"type": "r", "ref": 44, "children": [{"type": "t", "text": "Samira Fekairi, Sarah Scaglione, Charly Chahwan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2009.06.029"}], "href": "https://doi.org/10.1016/j.cell.2009.06.029"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19596236"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19596236"}]}, {"type": "r", "ref": 45, "children": [{"type": "t", "text": "Bess Frost, Martin Hemberg, Jada Lewis, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tau promotes neurodegeneration through global chromatin relaxation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Neurosci (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nn.3639"}], "href": "https://doi.org/10.1038/nn.3639"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24464041"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24464041"}]}, {"type": "r", "ref": 46, "children": [{"type": "t", "text": "Ian T Fiddes, Gerrald A Lodewijk, Meghan Mooring, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2018.03.051"}], "href": "https://doi.org/10.1016/j.cell.2018.03.051"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29856954"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29856954"}]}, {"type": "r", "ref": 47, "children": [{"type": "t", "text": "Kim De Keersmaecker, Zeynep Kalender Atak, Ning Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Genet (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ng.2508"}], "href": "https://doi.org/10.1038/ng.2508"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23263491"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23263491"}]}, {"type": "r", "ref": 48, "children": [{"type": "t", "text": "Linda S Kaltenbach, Eliana Romero, Robert R Becklin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Huntingtin interacting proteins are genetic modifiers of neurodegeneration."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Genet (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pgen.0030082"}], "href": "https://doi.org/10.1371/journal.pgen.0030082"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17500595"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17500595"}]}, {"type": "r", "ref": 49, "children": [{"type": "t", "text": "Michael McMahon, Nerys Thomas, Ken Itoh, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M403061200"}], "href": "https://doi.org/10.1074/jbc.M403061200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15143058"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15143058"}]}, {"type": "r", "ref": 50, "children": [{"type": "t", "text": "Stephan Gehrke, Yuzuru Imai, Nicholas Sokol, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature09191"}], "href": "https://doi.org/10.1038/nature09191"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20671708"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20671708"}]}]}]}
|
Synonyms | L36LBP, GAL4 |
Proteins | LEG4_HUMAN |
NCBI Gene ID | 3960 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
LGALS4 has 10,270 functional associations with biological entities spanning 9 categories (molecular profile, organism, chemical, functional term, phrase or reference, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 96 datasets.
Click the + buttons to view associations for LGALS4 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of LGALS4 gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of LGALS4 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray | tissue samples with high or low expression of LGALS4 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of LGALS4 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of LGALS4 gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of LGALS4 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with LGALS4 gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of LGALS4 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of LGALS4 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of LGALS4 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of LGALS4 gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing LGALS4 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing LGALS4 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores | cellular components co-occuring with LGALS4 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with LGALS4 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of LGALS4 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with LGALS4 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with LGALS4 gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with LGALS4 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
dbGAP Gene-Trait Associations | traits associated with LGALS4 gene in GWAS and other genetic association datasets from the dbGAP Gene-Trait Associations dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by LGALS4 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores | diseases co-occuring with LGALS4 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with LGALS4 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with LGALS4 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
DisGeNET Gene-Phenotype Associations | phenotypes associated with LGALS4 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at LGALS4 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of LGALS4 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of LGALS4 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing LGALS4 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GAD Gene-Disease Associations | diseases associated with LGALS4 gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset. | |
GAD High Level Gene-Disease Associations | diseases associated with LGALS4 gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset. | |
GDSC Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset. | |
GeneRIF Biological Term Annotations | biological terms co-occuring with LGALS4 gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing LGALS4 from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of LGALS4 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GO Biological Process Annotations 2015 | biological processes involving LGALS4 gene from the curated GO Biological Process Annotations 2015 dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing LGALS4 protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing LGALS4 protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing LGALS4 protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GO Molecular Function Annotations 2015 | molecular functions performed by LGALS4 gene from the curated GO Molecular Function Annotations 2015 dataset. | |
GTEx eQTL 2025 | SNPs regulating expression of LGALS4 gene from the GTEx eQTL 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of LGALS4 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of LGALS4 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of LGALS4 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GWASdb SNP-Disease Associations | diseases associated with LGALS4 gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset. | |
GWASdb SNP-Phenotype Associations | phenotypes associated with LGALS4 gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset. | |
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of LGALS4 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of LGALS4 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of LGALS4 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
Hub Proteins Protein-Protein Interactions | interacting hub proteins for LGALS4 from the curated Hub Proteins Protein-Protein Interactions dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for LGALS4 protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of LGALS4 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of LGALS4 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of LGALS4 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with LGALS4 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
KnockTF Gene Expression Profiles with Transcription Factor Perturbations | transcription factor perturbations changing expression of LGALS4 gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of LGALS4 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures | gene perturbations changing expression of LGALS4 gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset. | |
LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of LGALS4 gene from the LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
LOCATE Curated Protein Localization Annotations | cellular components containing LGALS4 protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain LGALS4 protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of LGALS4 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of LGALS4 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations | gene perturbations changing expression of LGALS4 gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of LGALS4 gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
Pathway Commons Protein-Protein Interactions | interacting proteins for LGALS4 from the Pathway Commons Protein-Protein Interactions dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of LGALS4 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of LGALS4 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PFOCR Pathway Figure Associations 2023 | pathways involving LGALS4 protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
PFOCR Pathway Figure Associations 2024 | pathways involving LGALS4 protein from the Wikipathways PFOCR 2024 dataset. | |
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles | cell types and tissues with high or low DNA methylation of LGALS4 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of LGALS4 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at LGALS4 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of LGALS4 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of LGALS4 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Sanger Dependency Map Cancer Cell Line Proteomics | cell lines associated with LGALS4 protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of LGALS4 gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
Tahoe Therapeutics Tahoe 100M Perturbation Atlas | drug perturbations changing expression of LGALS4 gene from the Tahoe Therapeutics Tahoe 100M Perturbation Atlas dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of LGALS4 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of LGALS4 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of LGALS4 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of LGALS4 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores | tissues with high expression of LGALS4 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of LGALS4 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores | tissues co-occuring with LGALS4 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with LGALS4 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |
WikiPathways Pathways 2024 | pathways involving LGALS4 protein from the WikiPathways Pathways 2024 dataset. | |