Name | myostatin |
Description | This gene encodes a secreted ligand of the TGF-beta (transforming growth factor-beta) superfamily of proteins. Ligands of this family bind various TGF-beta receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. The encoded preproprotein is proteolytically processed to generate each subunit of the disulfide-linked homodimer. This protein negatively regulates skeletal muscle cell proliferation and differentiation. Mutations in this gene are associated with increased skeletal muscle mass in humans and other mammals. [provided by RefSeq, Jul 2016] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nMyostatin (MSTN), also known as growth‐differentiation factor‑8, is a member of the transforming growth factor‑β superfamily that exerts a potent negative regulation on skeletal (and cardiac) muscle mass. It is initially synthesized as an inactive precursor that is secreted into the circulation in a latent complex; binding partners such as its propeptide, follistatin‑related proteins, WFIKKN1/2 and latent TGF‑β–binding proteins control its activation and bioavailability. Furthermore, extracellular conversion by proprotein convertases represents a critical regulatory step in its activation within muscle tissue."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "7"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nMSTN expression is highly dynamic and responsive to the organism’s physiological status. Acute anabolic stimuli such as resistance exercise and essential amino acid ingestion have been shown to suppress MSTN mRNA and protein levels, thereby favoring muscle hypertrophy. In contrast, in various conditions characterized by muscle atrophy and wasting—including aging‐associated sarcopenia, hyperammonemia in cirrhosis, chronic heart failure, and even environmental insults like smoking—MSTN levels are elevated and contribute to impaired myoblast proliferation, differentiation, and enhanced protein degradation through both canonical Smad and noncanonical p38 MAPK (as well as Notch and Wnt) signaling pathways. These findings underscore MSTN’s pivotal role in coupling external stimuli to the regulation of muscle mass."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "8", "end_ref": "18"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its central role in myogenesis, genetic variants within the MSTN locus and its downstream signaling network are increasingly implicated in inter‐individual differences in muscle performance and adaptations to training. In parallel, targeted inhibition of MSTN—whether by antibodies, modified follistatin derivatives or by modulating its proteolytic activation—has shown promise in preclinical models for enhancing muscle mass, improving insulin sensitivity, favorably influencing bone remodeling, and even mitigating features of neuromuscular disorders. Collectively, these diverse studies support MSTN as not only a critical regulator of muscle homeostasis but also a compelling therapeutic target with broader metabolic and systemic implications."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "19", "end_ref": "25"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nOverall, the broad spectrum of research—spanning genetic analyses, animal models, and clinical investigations—reinforces MSTN’s multifaceted roles in muscle regulation, its contribution to pathological atrophy under diverse conditions (including chronic diseases, disuse and metabolic syndromes), and its complex interplay with inflammatory, endocrine, and apoptotic cascades that affect cardiac function, bone homeostasis, and regenerative capacity. This collection of studies provides a comprehensive framework for future therapeutic strategies aimed at modulating MSTN activity."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "26", "end_ref": "29"}, {"type": "fg_f", "ref": "3"}, {"type": "fg_fs", "start_ref": "30", "end_ref": "43"}, {"type": "fg_f", "ref": "24"}, {"type": "fg_f", "ref": "44"}, {"type": "fg_f", "ref": "25"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Jennifer J Hill, Monique V Davies, Adele A Pearson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M206379200"}], "href": "https://doi.org/10.1074/jbc.M206379200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12194980"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12194980"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Bevin Philip, Zhijian Lu, Yijie Gao "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of GDF-8 signaling by the p38 MAPK."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Signal (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cellsig.2004.08.003"}], "href": "https://doi.org/10.1016/j.cellsig.2004.08.003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15567067"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15567067"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Sarah B Anderson, Alfred L Goldberg, Malcolm Whitman "}, {"type": "b", "children": [{"type": "t", "text": "Identification of a novel pool of extracellular pro-myostatin in skeletal muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M706678200"}], "href": "https://doi.org/10.1074/jbc.M706678200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18175804"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18175804"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Alan L Schneyer, Yisrael Sidis, Anisha Gulati, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Endocrinology (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/en.2008-0259"}], "href": "https://doi.org/10.1210/en.2008-0259"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18535106"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18535106"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Katalin Kondás, György Szláma, Mária Trexler, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M803025200"}], "href": "https://doi.org/10.1074/jbc.M803025200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18596030"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18596030"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Jennifer N Cash, Elizabeth B Angerman, Chandramohan Kattamuri, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structure of myostatin·follistatin-like 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M111.270801"}], "href": "https://doi.org/10.1074/jbc.M111.270801"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22052913"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22052913"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Ryan G Walker, Tommaso Poggioli, Lida Katsimpardi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCRESAHA.116.308391"}], "href": "https://doi.org/10.1161/CIRCRESAHA.116.308391"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27034275"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27034275"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "G Milan, E Dalla Nora, C Pilon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Changes in muscle myostatin expression in obese subjects after weight loss."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Endocrinol Metab (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/jc.2003-032047"}], "href": "https://doi.org/10.1210/jc.2003-032047"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15181048"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15181048"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Jung-Jun Park, Jason R Berggren, Matthew W Hulver, et al. "}, {"type": "b", "children": [{"type": "t", "text": "GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Physiol Genomics (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/physiolgenomics.00045.2006"}], "href": "https://doi.org/10.1152/physiolgenomics.00045.2006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16849634"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16849634"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Anne Marie Winther Petersen, Faidon Magkos, Philip Atherton, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Endocrinol Metab (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajpendo.00301.2007"}], "href": "https://doi.org/10.1152/ajpendo.00301.2007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17609255"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17609255"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Emily Louis, Ulrika Raue, Yifan Yang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Appl Physiol (1985) (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/japplphysiol.00679.2007"}], "href": "https://doi.org/10.1152/japplphysiol.00679.2007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17823296"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17823296"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Bertrand Léger, Wim Derave, Katrien De Bock, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Rejuvenation Res (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1089/rej.2007.0588"}], "href": "https://doi.org/10.1089/rej.2007.0588"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18240972"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18240972"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Juha J Hulmi, Jörgen Tannerstedt, Harri Selänne, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Appl Physiol (1985) (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/japplphysiol.00087.2009"}], "href": "https://doi.org/10.1152/japplphysiol.00087.2009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19299575"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19299575"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Micah J Drummond, Erin L Glynn, Christopher S Fry, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Nutr (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3945/jn.109.112797"}], "href": "https://doi.org/10.3945/jn.109.112797"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19828686"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19828686"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Karsten Lenk, Sandra Erbs, Robert Höllriegel, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Eur J Prev Cardiol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1177/1741826711402735"}], "href": "https://doi.org/10.1177/1741826711402735"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21450574"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21450574"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Craig McFarlane, Gu Zi Hui, Wong Zhi Wei Amanda, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human myostatin negatively regulates human myoblast growth and differentiation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Cell Physiol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajpcell.00012.2011"}], "href": "https://doi.org/10.1152/ajpcell.00012.2011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21508334"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21508334"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Jia Qiu, Samjhana Thapaliya, Ashok Runkana, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1317049110"}], "href": "https://doi.org/10.1073/pnas.1317049110"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24145431"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24145431"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Júlia Aliz Baán, Zoltán V Varga, Przemyslaw Leszek, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Transl Med (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/s12967-014-0365-0"}], "href": "https://doi.org/10.1186/s12967-014-0365-0"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25591711"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25591711"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "M W Hamrick, A C McPherron, C O Lovejoy "}, {"type": "b", "children": [{"type": "t", "text": "Bone mineral content and density in the humerus of adult myostatin-deficient mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Calcif Tissue Int (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00223-001-1109-8"}], "href": "https://doi.org/10.1007/s00223-001-1109-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12060865"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12060865"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Martine A I Thomis, Wim Huygens, Sofie Heuninckx, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Eur J Appl Physiol (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00421-004-1093-6"}], "href": "https://doi.org/10.1007/s00421-004-1093-6"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15083369"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15083369"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Carlos A Muniesa, Marta González-Freire, Catalina Santiago, et al. "}, {"type": "b", "children": [{"type": "t", "text": "World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Br J Sports Med (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1136/bjsm.2008.051680"}], "href": "https://doi.org/10.1136/bjsm.2008.051680"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18801770"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18801770"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "A Saremi, R Gharakhanloo, S Sharghi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Effects of oral creatine and resistance training on serum myostatin and GASP-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Endocrinol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.mce.2009.12.019"}], "href": "https://doi.org/10.1016/j.mce.2009.12.019"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20026378"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20026378"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Jonatan R Ruiz, David Arteta, Amaya Buxens, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Can we identify a power-oriented polygenic profile?"}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Appl Physiol (1985) (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/japplphysiol.01242.2009"}], "href": "https://doi.org/10.1152/japplphysiol.01242.2009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20044471"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20044471"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Peter M Burch, Oksana Pogoryelova, Joe Palandra, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Reduced serum myostatin concentrations associated with genetic muscle disease progression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Neurol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00415-016-8379-6"}], "href": "https://doi.org/10.1007/s00415-016-8379-6"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28074267"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28074267"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Dibash K Das, Zachary A Graham, Christopher P Cardozo "}, {"type": "b", "children": [{"type": "t", "text": "Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Acta Physiol (Oxf) (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/apha.13367"}], "href": "https://doi.org/10.1111/apha.13367"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31442362"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31442362"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "M J Seibert, Q L Xue, L P Fried, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the Women's Health and Aging Study II cohort."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Geriatr Soc (2001)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1046/j.1532-5415.2001.49214.x"}], "href": "https://doi.org/10.1046/j.1532-5415.2001.49214.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11555072"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11555072"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Stephen Welle, Kirti Bhatt, Bharati Shah, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62-77 and 21-31 yr old men."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Gerontol (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0531-5565(02)00025-6"}], "href": "https://doi.org/10.1016/s0531-5565(02"}, {"type": "t", "text": "00025-6) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12175483"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12175483"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Murray D Mitchell, Claire C Osepchook, Kai-Cheung Leung, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myostatin is a human placental product that regulates glucose uptake."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Endocrinol Metab (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/jc.2005-2361"}], "href": "https://doi.org/10.1210/jc.2005-2361"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16464946"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16464946"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Jeong-Su Kim, John K Petrella, James M Cross, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Appl Physiol (1985) (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/japplphysiol.01194.2006"}], "href": "https://doi.org/10.1152/japplphysiol.01194.2006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17673556"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17673556"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Wen Guo, John Flanagan, Ravi Jasuja, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M708968200"}], "href": "https://doi.org/10.1074/jbc.M708968200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18203713"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18203713"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Dustin S Hittel, Jason R Berggren, Jane Shearer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Increased secretion and expression of myostatin in skeletal muscle from extremely obese women."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Diabetes (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.2337/db08-0943"}], "href": "https://doi.org/10.2337/db08-0943"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18835929"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18835929"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Jonatan R Ruiz, Félix Gómez-Gallego, Catalina Santiago, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Is there an optimum endurance polygenic profile?"}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Physiol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1113/jphysiol.2008.166645"}], "href": "https://doi.org/10.1113/jphysiol.2008.166645"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19237423"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19237423"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Bertrand Léger, Rosalba Senese, Abdul W Al-Khodairy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Atrogin-1, MuRF1, and FoXO, as well as phosphorylated GSK-3beta and 4E-BP1 are reduced in skeletal muscle of chronic spinal cord-injured patients."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Muscle Nerve (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/mus.21293"}], "href": "https://doi.org/10.1002/mus.21293"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19533653"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19533653"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Maurice Hayot, Julie Rodriguez, Barbara Vernus, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Endocrinol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.mce.2010.09.008"}], "href": "https://doi.org/10.1016/j.mce.2010.09.008"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20884321"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20884321"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Daniela Verzola, Vanessa Procopio, Antonella Sofia, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Apoptosis and myostatin mRNA are upregulated in the skeletal muscle of patients with chronic kidney disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Kidney Int (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ki.2010.494"}], "href": "https://doi.org/10.1038/ki.2010.494"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21228768"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21228768"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Der-Sheng Han, Yung-Ming Chen, Sen-Yung Lin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Serum myostatin levels and grip strength in normal subjects and patients on maintenance haemodialysis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin Endocrinol (Oxf) (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1365-2265.2011.04120.x"}], "href": "https://doi.org/10.1111/j.1365-2265.2011.04120.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21605155"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21605155"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Gilberto Candido Laurentino, Carlos Ugrinowitsch, Hamilton Roschel, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Strength training with blood flow restriction diminishes myostatin gene expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Med Sci Sports Exerc (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1249/MSS.0b013e318233b4bc"}], "href": "https://doi.org/10.1249/MSS.0b013e318233b4bc"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21900845"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21900845"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Claus Brandt, Anders R Nielsen, Christian P Fischer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Plasma and muscle myostatin in relation to type 2 diabetes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0037236"}], "href": "https://doi.org/10.1371/journal.pone.0037236"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22615949"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22615949"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Tim Snijders, Lex B Verdijk, Joey S J Smeets, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Age (Dordr) (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s11357-014-9699-z"}], "href": "https://doi.org/10.1007/s11357-014-9699-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25108351"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25108351"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Mridula Sharma, Craig McFarlane, Ravi Kambadur, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myostatin: expanding horizons."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "IUBMB Life (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/iub.1392"}], "href": "https://doi.org/10.1002/iub.1392"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26305594"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26305594"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "M Hjorth, S Pourteymour, S W Görgens, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Acta Physiol (Oxf) (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/apha.12631"}], "href": "https://doi.org/10.1111/apha.12631"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26572800"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26572800"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Hsun-Ming Chang, Lanlan Fang, Jung-Chien Cheng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Effects of growth differentiation factor 8 on steroidogenesis in human granulosa-lutein cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Fertil Steril (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.fertnstert.2015.10.034"}], "href": "https://doi.org/10.1016/j.fertnstert.2015.10.034"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26607022"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26607022"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "Marissa J Schafer, Elizabeth J Atkinson, Patrick M Vanderboom, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Quantification of GDF11 and Myostatin in Human Aging and Cardiovascular Disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Metab (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cmet.2016.05.023"}], "href": "https://doi.org/10.1016/j.cmet.2016.05.023"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27304512"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27304512"}]}, {"type": "r", "ref": 44, "children": [{"type": "t", "text": "Hiroki Nishikawa, Hirayuki Enomoto, Akio Ishii, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cachexia Sarcopenia Muscle (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jcsm.12212"}], "href": "https://doi.org/10.1002/jcsm.12212"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28627027"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28627027"}]}, {"type": "r", "ref": 45, "children": [{"type": "t", "text": "Virginie Mariot, Romain Joubert, Christophe Hourdé, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41467-017-01486-4"}], "href": "https://doi.org/10.1038/s41467-017-01486-4"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29192144"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29192144"}]}]}]}
|
Synonyms | GDF8, MSLHP |
Proteins | GDF8_HUMAN |
NCBI Gene ID | 2660 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
MSTN has 5,508 functional associations with biological entities spanning 8 categories (molecular profile, organism, chemical, functional term, phrase or reference, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 93 datasets.
Click the + buttons to view associations for MSTN from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of MSTN gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of MSTN gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray | tissue samples with high or low expression of MSTN gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of MSTN gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of MSTN gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Cell Line Gene Expression Profiles | cell lines with high or low expression of MSTN gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of MSTN gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of MSTN gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of MSTN gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of MSTN gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with MSTN gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of MSTN gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of MSTN gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of MSTN gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of MSTN gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing MSTN protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing MSTN protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores | cellular components co-occuring with MSTN protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with MSTN protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of MSTN gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with MSTN gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with MSTN gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with MSTN gene/protein from the curated CTD Gene-Disease Associations dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by MSTN gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Curated Gene-Disease Association Evidence Scores 2025 | diseases involving MSTN gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores | diseases co-occuring with MSTN gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with MSTN gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with MSTN gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
DisGeNET Gene-Phenotype Associations | phenotypes associated with MSTN gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
DrugBank Drug Targets | interacting drugs for MSTN protein from the curated DrugBank Drug Targets dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at MSTN gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of MSTN gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of MSTN gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing MSTN from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GAD Gene-Disease Associations | diseases associated with MSTN gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset. | |
GAD High Level Gene-Disease Associations | diseases associated with MSTN gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset. | |
GDSC Cell Line Gene Expression Profiles | cell lines with high or low expression of MSTN gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset. | |
GeneRIF Biological Term Annotations | biological terms co-occuring with MSTN gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing MSTN from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of MSTN gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GO Biological Process Annotations 2015 | biological processes involving MSTN gene from the curated GO Biological Process Annotations 2015 dataset. | |
GO Biological Process Annotations 2023 | biological processes involving MSTN gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving MSTN gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing MSTN protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GO Molecular Function Annotations 2015 | molecular functions performed by MSTN gene from the curated GO Molecular Function Annotations 2015 dataset. | |
GO Molecular Function Annotations 2023 | molecular functions performed by MSTN gene from the curated GO Molecular Function Annotations 2023 dataset. | |
GO Molecular Function Annotations 2025 | molecular functions performed by MSTN gene from the curated GO Molecular Function Annotations 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of MSTN gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of MSTN gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of MSTN gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles | cell lines with high or low expression of MSTN gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of MSTN gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of MSTN gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of MSTN protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of MSTN gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
HPO Gene-Disease Associations | phenotypes associated with MSTN gene by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset. | |
HuGE Navigator Gene-Phenotype Associations | phenotypes associated with MSTN gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for MSTN protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of MSTN gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of MSTN gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with MSTN gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
KnockTF Gene Expression Profiles with Transcription Factor Perturbations | transcription factor perturbations changing expression of MSTN gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of MSTN gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain MSTN protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by MSTN gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
MPO Gene-Phenotype Associations | phenotypes of transgenic mice caused by MSTN gene mutations from the MPO Gene-Phenotype Associations dataset. | |
OMIM Gene-Disease Associations | phenotypes associated with MSTN gene from the curated OMIM Gene-Disease Associations dataset. | |
PANTHER Pathways | pathways involving MSTN protein from the PANTHER Pathways dataset. | |
Pathway Commons Protein-Protein Interactions | interacting proteins for MSTN from the Pathway Commons Protein-Protein Interactions dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of MSTN gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of MSTN gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PFOCR Pathway Figure Associations 2023 | pathways involving MSTN protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
PFOCR Pathway Figure Associations 2024 | pathways involving MSTN protein from the Wikipathways PFOCR 2024 dataset. | |
Reactome Pathways 2024 | pathways involving MSTN protein from the Reactome Pathways 2024 dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at MSTN gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of MSTN gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of MSTN gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of MSTN gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of MSTN gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of MSTN gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of MSTN gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of MSTN protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of MSTN protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of MSTN protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores | tissues co-occuring with MSTN protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with MSTN protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |
WikiPathways Pathways 2014 | pathways involving MSTN protein from the Wikipathways Pathways 2014 dataset. | |
WikiPathways Pathways 2024 | pathways involving MSTN protein from the WikiPathways Pathways 2024 dataset. | |