| Name | nectin cell adhesion molecule 1 |
| Description | This gene encodes an adhesion protein that plays a role in the organization of adherens junctions and tight junctions in epithelial and endothelial cells. The protein is a calcium(2+)-independent cell-cell adhesion molecule that belongs to the immunoglobulin superfamily and has 3 extracellular immunoglobulin-like loops, a single transmembrane domain (in some isoforms), and a cytoplasmic region. This protein acts as a receptor for glycoprotein D (gD) of herpes simplex viruses 1 and 2 (HSV-1, HSV-2), and pseudorabies virus (PRV) and mediates viral entry into epithelial and neuronal cells. Mutations in this gene cause cleft lip and palate/ectodermal dysplasia 1 syndrome (CLPED1) as well as non-syndromic cleft lip with or without cleft palate (CL/P). Alternative splicing results in multiple transcript variants encoding proteins with distinct C-termini. [provided by RefSeq, Oct 2009] |
| Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nNECTIN1 is an immunoglobulin‐like cell adhesion molecule that plays a pivotal role in establishing and regulating adherens junctions in epithelial and neuronal cells. By engaging in both homophilic and heterophilic interactions – often in concert with other junctional proteins such as E‐cadherin and afadin – NECTIN1 orchestrates cell–cell adhesion, tissue polarization, and proper morphogenesis. Disruption or mutation of NECTIN1 (also known in its gene form as PVRL1) has been linked to developmental anomalies such as cleft lip/palate and may contribute to alterations in neural connectivity and tumor behavior, as observed in conditions like melanoma progression."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "8"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its fundamental role in cell adhesion and tissue organization, NECTIN1 is exploited as a critical receptor by several alphaherpesviruses—including herpes simplex virus types 1 and 2, pseudorabies virus, and Herpes B virus—to facilitate viral entry into host cells. Binding of the viral glycoprotein D (gD) to NECTIN1 triggers downstream events such as receptor-mediated endocytosis, membrane fusion, and dynamic reorganization of lipid rafts and the actin cytoskeleton. In addition, NECTIN1 undergoes regulated proteolytic processing that can further modulate its availability at the cell surface, thereby impacting immune recognition and influencing the efficacy of oncolytic virus therapies."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "9", "end_ref": "30"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Claude Krummenacher, Frédéric Baribaud, Manuel Ponce de Leon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Virology (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.virol.2004.02.005"}], "href": "https://doi.org/10.1016/j.virol.2004.02.005"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15110526"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15110526"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Takashi Hoshino, Toshiaki Sakisaka, Takeshi Baba, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M414447200"}], "href": "https://doi.org/10.1074/jbc.M414447200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15857834"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15857834"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Eisaburo Ichikawa, Akira Watanabe, Yoko Nakano, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese: population-based and family-based candidate gene analyses."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Hum Genet (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10038-005-0319-8"}], "href": "https://doi.org/10.1007/s10038-005-0319-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16247549"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16247549"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Y-T Tseng, H-H Hsiao, H-P Hsiao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A study of PVRL1 mutations for non-syndromic cleft lip and/or palate among Taiwanese patients."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Oral Maxillofac Surg (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ijom.2006.01.007"}], "href": "https://doi.org/10.1016/j.ijom.2006.01.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16497481"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16497481"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "L Scapoli, A Palmieri, M Martinelli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Study of the PVRL1 gene in Italian nonsyndromic cleft lip patients with or without cleft palate."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Hum Genet (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1529-8817.2005.00237.x"}], "href": "https://doi.org/10.1111/j.1529-8817.2005.00237.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16674562"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16674562"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Benjamin Galen, Natalia Cheshenko, Ana Tuyama, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Access to nectin favors herpes simplex virus infection at the apical surface of polarized human epithelial cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.01503-06"}], "href": "https://doi.org/10.1128/JVI.01503-06"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17005657"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17005657"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Karla J Castellanos, Eva Gagyi, Bernadett Kormos, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Increased axonal expression of nectin-1 in multiple sclerosis plaques."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Neurol Sci (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10072-012-1026-9"}], "href": "https://doi.org/10.1007/s10072-012-1026-9"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22460696"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22460696"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Julien Ablain, Amira Al Mahi, Harriet Rothschild, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of NECTIN1 triggers melanoma dissemination upon local IGF1 depletion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Genet (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41588-022-01191-z"}], "href": "https://doi.org/10.1038/s41588-022-01191-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "36229674"}], "href": "https://pubmed.ncbi.nlm.nih.gov/36229674"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Miri Yoon, Patricia G Spear "}, {"type": "b", "children": [{"type": "t", "text": "Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/jvi.76.14.7203-7208.2002"}], "href": "https://doi.org/10.1128/jvi.76.14.7203-7208.2002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12072519"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12072519"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Florent C Bender, J Charles Whitbeck, Manuel Ponce de Leon, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/jvi.77.17.9542-9552.2003"}], "href": "https://doi.org/10.1128/jvi.77.17.9542-9552.2003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12915568"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12915568"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Frank Struyf, Aileen E Plate, Patricia G Spear "}, {"type": "b", "children": [{"type": "t", "text": "Deletion of the second immunoglobulin-like domain of nectin-1 alters its intracellular processing and localization and ability to mediate entry of herpes simplex virus."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.79.6.3841-3845.2005"}], "href": "https://doi.org/10.1128/JVI.79.6.3841-3845.2005"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15731277"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15731277"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Zhenkun Yu, Prasad S Adusumilli, David P Eisenberg, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Ther (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/sj.mt.6300009"}], "href": "https://doi.org/10.1038/sj.mt.6300009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17164781"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17164781"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Katie M Stiles, Richard S B Milne, Gary H Cohen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Virology (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.virol.2007.11.012"}], "href": "https://doi.org/10.1016/j.virol.2007.11.012"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18076965"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18076965"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Vaibhav Tiwari, Myung-Jin Oh, Maria Kovacs, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FEBS J (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1742-4658.2008.06655.x"}], "href": "https://doi.org/10.1111/j.1742-4658.2008.06655.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18803666"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18803666"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Jinsook Kim, Christina Lilliehook, Amanda Dudak, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Activity-dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloprotease 10 (ADAM10)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110.126649"}], "href": "https://doi.org/10.1074/jbc.M110.126649"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20501653"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20501653"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Paolo Di Giovine, Ethan C Settembre, Arjun K Bhargava, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Pathog (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.ppat.1002277"}], "href": "https://doi.org/10.1371/journal.ppat.1002277"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21980294"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21980294"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Tatiana Gianni, Gabriella Campadelli-Fiume "}, {"type": "b", "children": [{"type": "t", "text": "αVβ3-integrin relocalizes nectin1 and routes herpes simplex virus to lipid rafts."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.06689-11"}], "href": "https://doi.org/10.1128/JVI.06689-11"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22171266"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22171266"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Kirsten B Bojesen, Ole Clausen, Kristian Rohde, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nectin-1 binds and signals through the fibroblast growth factor receptor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M112.345215"}], "href": "https://doi.org/10.1074/jbc.M112.345215"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22955284"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22955284"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Yoshiaki Ando, Chika Yasuoka, Takuya Mishima, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Concanavalin A-mediated T cell proliferation is regulated by herpes virus entry mediator costimulatory molecule."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "In Vitro Cell Dev Biol Anim (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s11626-013-9705-2"}], "href": "https://doi.org/10.1007/s11626-013-9705-2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24163161"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24163161"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Eric Lazear, J Charles Whitbeck, Yi Zuo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Induction of conformational changes at the N-terminus of herpes simplex virus glycoprotein D upon binding to HVEM and nectin-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Virology (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.virol.2013.10.019"}], "href": "https://doi.org/10.1016/j.virol.2013.10.019"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24314649"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24314649"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Lingke Li, Zhengliang Qiu, Yan Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Herpes B virus gD interaction with its human receptor--an in silico analysis approach."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Theor Biol Med Model (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1742-4682-11-27"}], "href": "https://doi.org/10.1186/1742-4682-11-27"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24902525"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24902525"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Guangwen Lu, Na Zhang, Jianxun Qi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Crystal structure of herpes simplex virus 2 gD bound to nectin-1 reveals a conserved mode of receptor recognition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.01906-14"}], "href": "https://doi.org/10.1128/JVI.01906-14"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25231300"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25231300"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Regina B Troyanovsky, Indrajyoti Indra, Chi-Shuo Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cadherin controls nectin recruitment into adherens junctions by remodeling the actin cytoskeleton."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.161588"}], "href": "https://doi.org/10.1242/jcs.161588"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25395582"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25395582"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Jennifer V Hall, Jingru Sun, Jessica Slade, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Front Cell Infect Microbiol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3389/fcimb.2014.00158"}], "href": "https://doi.org/10.3389/fcimb.2014.00158"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25414835"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25414835"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Thibaut Deschamps, Christos Dogrammatzis, Ranajoy Mullick, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cbl E3 Ligase Mediates the Removal of Nectin-1 from the Surface of Herpes Simplex Virus 1-Infected Cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Virol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/JVI.00393-17"}], "href": "https://doi.org/10.1128/JVI.00393-17"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28381567"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28381567"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Yoshikazu Fujimoto, Yukiko Tomioka, Kinuyo Ozaki, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Gen Virol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1099/jgv.0.000804"}], "href": "https://doi.org/10.1099/jgv.0.000804"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28671524"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28671524"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Veronica M Holmes, Carlos Maluquer de Motes, Paige T Richards, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Interaction between nectin-1 and the human natural killer cell receptor CD96."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0212443"}], "href": "https://doi.org/10.1371/journal.pone.0212443"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30759143"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30759143"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Yitao Wang, Chunxu Zhang, Li Mai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PRR11 and SKA2 gene pair is overexpressed and regulated by p53 in breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMB Rep (2019)"}]}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30760381"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30760381"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Alex R Generous, Oliver J Harrison, Regina B Troyanovsky, et al. "}, {"type": "b", "children": [{"type": "a", "children": [{"type": "t", "text": "i"}], "href": "i"}, {"type": "t", "text": "Trans"}, {"type": "a", "children": [{"type": "t", "text": "/i"}], "href": "/i"}, {"type": "t", "text": "-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.235507"}], "href": "https://doi.org/10.1242/jcs.235507"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31331966"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31331966"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Teng Zhang, Yunchao Liu, Yumei Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A monoclonal antibody neutralizes pesudorabies virus by blocking gD binding to the receptor nectin-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Biol Macromol (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ijbiomac.2021.07.170"}], "href": "https://doi.org/10.1016/j.ijbiomac.2021.07.170"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "34339791"}], "href": "https://pubmed.ncbi.nlm.nih.gov/34339791"}]}]}]}
|
| NCBI Gene ID | 5818 |
| API | |
| Download Associations | |
| Predicted Functions |
![]() |
| Co-expressed Genes |
![]() |
| Expression in Tissues and Cell Lines |
![]() |
NECTIN1 has 3,159 functional associations with biological entities spanning 5 categories (disease, phenotype or trait, functional term, phrase or reference, chemical, cell line, cell type or tissue, gene, protein or microRNA) extracted from 38 datasets.
Click the + buttons to view associations for NECTIN1 from the datasets below.
If available, associations are ranked by standardized value
| Dataset | Summary | |
|---|---|---|
| Allen Brain Atlas Aging Dementia and Traumatic Brain Injury Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of NECTIN1 gene relative to other tissue samples from the Allen Brain Atlas Aging Dementia and Traumatic Brain Injury Tissue Sample Gene Expression Profiles dataset. | |
| CCLE Cell Line Proteomics | Cell lines associated with NECTIN1 protein from the CCLE Cell Line Proteomics dataset. | |
| CellMarker Gene-Cell Type Associations | cell types associated with NECTIN1 gene from the CellMarker Gene-Cell Type Associations dataset. | |
| ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of NECTIN1 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
| ClinVar Gene-Phenotype Associations 2025 | phenotypes associated with NECTIN1 gene from the curated ClinVar Gene-Phenotype Associations 2025 dataset. | |
| COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing NECTIN1 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
| COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with NECTIN1 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
| DeepCoverMOA Drug Mechanisms of Action | small molecule perturbations with high or low expression of NECTIN1 protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset. | |
| DepMap CRISPR Gene Dependency | cell lines with fitness changed by NECTIN1 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
| DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with NECTIN1 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
| DisGeNET Gene-Disease Associations | diseases associated with NECTIN1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
| DisGeNET Gene-Phenotype Associations | phenotypes associated with NECTIN1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
| GlyGen Glycosylated Proteins | ligands (chemical) binding NECTIN1 protein from the GlyGen Glycosylated Proteins dataset. | |
| GO Biological Process Annotations 2023 | biological processes involving NECTIN1 gene from the curated GO Biological Process Annotations 2023 dataset. | |
| GO Biological Process Annotations 2025 | biological processes involving NECTIN1 gene from the curated GO Biological Process Annotations2025 dataset. | |
| GO Cellular Component Annotations 2023 | cellular components containing NECTIN1 protein from the curated GO Cellular Component Annotations 2023 dataset. | |
| GO Cellular Component Annotations 2025 | cellular components containing NECTIN1 protein from the curated GO Cellular Component Annotations 2025 dataset. | |
| GO Molecular Function Annotations 2023 | molecular functions performed by NECTIN1 gene from the curated GO Molecular Function Annotations 2023 dataset. | |
| GO Molecular Function Annotations 2025 | molecular functions performed by NECTIN1 gene from the curated GO Molecular Function Annotations 2025 dataset. | |
| GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of NECTIN1 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
| GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of NECTIN1 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
| GWAS Catalog SNP-Phenotype Associations 2025 | phenotypes associated with NECTIN1 gene in GWAS datasets from the GWAS Catalog SNP-Phenotype Associations 2025 dataset. | |
| JASPAR Predicted Human Transcription Factor Targets 2025 | transcription factors regulating expression of NECTIN1 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Human Transcription Factor Targets dataset. | |
| JASPAR Predicted Mouse Transcription Factor Targets 2025 | transcription factors regulating expression of NECTIN1 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Mouse Transcription Factor Targets 2025 dataset. | |
| Kinase Library Tyrosine Kinome Atlas | kinases that phosphorylate NECTIN1 protein from the Kinase Library Tyrosine Kinome Atlas dataset. | |
| LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of NECTIN1 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
| MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by NECTIN1 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
| MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of NECTIN1 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
| NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of NECTIN1 gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
| PFOCR Pathway Figure Associations 2023 | pathways involving NECTIN1 protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
| PFOCR Pathway Figure Associations 2024 | pathways involving NECTIN1 protein from the Wikipathways PFOCR 2024 dataset. | |
| Reactome Pathways 2024 | pathways involving NECTIN1 protein from the Reactome Pathways 2024 dataset. | |
| RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of NECTIN1 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
| RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of NECTIN1 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
| SynGO Synaptic Gene Annotations | synaptic terms associated with NECTIN1 gene from the SynGO Synaptic Gene Annotations dataset. | |
| Tahoe Therapeutics Tahoe 100M Perturbation Atlas | drug perturbations changing expression of NECTIN1 gene from the Tahoe Therapeutics Tahoe 100M Perturbation Atlas dataset. | |
| TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of NECTIN1 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
| TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with NECTIN1 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |