PLA2G4E Gene

HGNC Family C2 domain containing, Phospholipases
Name phospholipase A2, group IVE
Description This gene encodes a member of the cytosolic phospholipase A2 group IV family. Members of this family are involved in regulation of membrane tubule-mediated transport. The enzyme encoded by this member of the family plays a role in trafficking through the clathrin-independent endocytic pathway. The enzyme regulates the recycling process via formation of tubules that transport internalized clathrin-independent cargo proteins back to the cell surface. [provided by RefSeq, Jan 2017]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nA survey of the provided abstracts reveals that none of these studies describe or address any function of PLA2G4E. Instead, the collected literature."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "42"}]}, {"type": "t", "text": "\nThese reports collectively focus on the critical roles played by Snail family transcription factors and their cofactors in regulating epithelial‐to‐mesenchymal transition (EMT) in a wide array of physiological and pathological contexts. The studies detail how Snail, along with partnering proteins and signaling pathways (including TGF‑β, WNT, growth factor cascades, and microRNA networks), mediates the suppression of epithelial markers like E‑cadherin and the concomitant induction of mesenchymal features that enhance cell migration, invasion, and survival.\n"}]}, {"type": "t", "text": "\n"}, {"type": "p", "children": [{"type": "t", "text": "\nNotably, while these investigations underscore complex regulatory circuits that govern cell plasticity, metastasis, fibrosis, and developmental processes through EMT modulation, there is no mention or elucidation of PLA2G4E in any of the provided abstracts. This absence indicates that the function of PLA2G4E remains uncharacterized within the context of these studies and suggests that further research is needed to determine whether PLA2G4E might intersect with the EMT pathways or Snail-associated regulatory networks described herein."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "42"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Junichi Ikenouchi, Miho Matsuda, Mikio Furuse, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.00389"}], "href": "https://doi.org/10.1242/jcs.00389"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12668723"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12668723"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Kenji Seki, Toshihiko Fujimori, Pierre Savagner, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mouse Snail family transcription repressors regulate chondrocyte, extracellular matrix, type II collagen, and aggrecan."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M308336200"}], "href": "https://doi.org/10.1074/jbc.M308336200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12917416"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12917416"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Sonia Vega, Aixa V Morales, Oscar H Ocaña, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail blocks the cell cycle and confers resistance to cell death."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Genes Dev (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1101/gad.294104"}], "href": "https://doi.org/10.1101/gad.294104"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15155580"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15155580"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Colin Jamora, Pedro Lee, Pawel Kocieniewski, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Biol (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pbio.0030011"}], "href": "https://doi.org/10.1371/journal.pbio.0030011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15630473"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15630473"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Susan E Moody, Denise Perez, Tien-chi Pan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The transcriptional repressor Snail promotes mammary tumor recurrence."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Cell (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ccr.2005.07.009"}], "href": "https://doi.org/10.1016/j.ccr.2005.07.009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16169465"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16169465"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Jacqueline Kim Dale, Pascale Malapert, Jérome Chal, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Dev Cell (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.devcel.2006.02.011"}], "href": "https://doi.org/10.1016/j.devcel.2006.02.011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16516838"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16516838"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Stephen A Murray, Thomas Gridley "}, {"type": "b", "children": [{"type": "t", "text": "Snail family genes are required for left-right asymmetry determination, but not neural crest formation, in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0602234103"}], "href": "https://doi.org/10.1073/pnas.0602234103"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16801545"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16801545"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Gema Moreno-Bueno, Eva Cubillo, David Sarrió, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-06-0479"}], "href": "https://doi.org/10.1158/0008-5472.CAN-06-0479"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17018611"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17018611"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Stephen A Murray, Kathleen F Oram, Thomas Gridley "}, {"type": "b", "children": [{"type": "t", "text": "Multiple functions of Snail family genes during palate development in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Development (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/dev.02837"}], "href": "https://doi.org/10.1242/dev.02837"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17376812"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17376812"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Robert G Hardy, Carolina Vicente-Dueñas, Ines González-Herrero, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail family transcription factors are implicated in thyroid carcinogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Pathol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.2353/ajpath.2007.061211"}], "href": "https://doi.org/10.2353/ajpath.2007.061211"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17724139"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17724139"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Zhaoyuan Hou, Hongzhuang Peng, Kasirajan Ayyanathan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.01435-07"}], "href": "https://doi.org/10.1128/MCB.01435-07"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18347060"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18347060"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "D Olmeda, A Montes, G Moreno-Bueno, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncogene (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/onc.2008.118"}], "href": "https://doi.org/10.1038/onc.2008.118"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18408755"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18408755"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Nicolás Herranz, Diego Pasini, Víctor M Díaz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.00323-08"}], "href": "https://doi.org/10.1128/MCB.00323-08"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18519590"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18519590"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Yuen L Pon, Hong Y Zhou, Annie N Y Cheung, et al. "}, {"type": "b", "children": [{"type": "t", "text": "p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-07-6302"}], "href": "https://doi.org/10.1158/0008-5472.CAN-07-6302"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18701475"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18701475"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Takashi Kokudo, Yuka Suzuki, Yasuhiro Yoshimatsu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.028282"}], "href": "https://doi.org/10.1242/jcs.028282"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18796538"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18796538"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Sylvie Thuault, E-Jean Tan, Hector Peinado, et al. "}, {"type": "b", "children": [{"type": "t", "text": "HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M802016200"}], "href": "https://doi.org/10.1074/jbc.M802016200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18832382"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18832382"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Theresa Vincent, Etienne P A Neve, Jill R Johnson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1905"}], "href": "https://doi.org/10.1038/ncb1905"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19597490"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19597490"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Rosa Viñas-Castells, Manuel Beltran, Gabriela Valls, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109.065995"}], "href": "https://doi.org/10.1074/jbc.M109.065995"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19955572"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19955572"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Ofelia M Martínez-Estrada, Laura A Lettice, Abdelkader Essafi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Genet (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ng.494"}], "href": "https://doi.org/10.1038/ng.494"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20023660"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20023660"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Stavroula Baritaki, Sara Huerta-Yepez, Anna Sahakyan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Cycle (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4161/cc.9.24.14229"}], "href": "https://doi.org/10.4161/cc.9.24.14229"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21150329"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21150329"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Daochun Luo, Jinxia Wang, Jeff Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mouse snail is a target gene for HIF."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cancer Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/1541-7786.MCR-10-0214"}], "href": "https://doi.org/10.1158/1541-7786.MCR-10-0214"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21257819"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21257819"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Natàlia Dave, Sandra Guaita-Esteruelas, Susana Gutarra, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110.168625"}], "href": "https://doi.org/10.1074/jbc.M110.168625"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21317430"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21317430"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Hien Dang, Wei Ding, Dow Emerson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Cancer (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1471-2407-11-396"}], "href": "https://doi.org/10.1186/1471-2407-11-396"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21929801"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21929801"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Chiao-Yin Sun, Shih-Chung Chang, Mai-Szu Wu "}, {"type": "b", "children": [{"type": "t", "text": "Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0034026"}], "href": "https://doi.org/10.1371/journal.pone.0034026"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22479508"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22479508"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Vahab D Soleimani, Hang Yin, Arezu Jahani-Asl, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2012.05.046"}], "href": "https://doi.org/10.1016/j.molcel.2012.05.046"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22771117"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22771117"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Alba Millanes-Romero, Nicolás Herranz, Valentina Perrera, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2013.10.015"}], "href": "https://doi.org/10.1016/j.molcel.2013.10.015"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24239292"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24239292"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Ana Villarejo, Alvaro Cortés-Cabrera, Patricia Molina-Ortíz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.528026"}], "href": "https://doi.org/10.1074/jbc.M113.528026"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24297167"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24297167"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Magdalena A Cichon, Derek C Radisky "}, {"type": "b", "children": [{"type": "t", "text": "ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.1940"}], "href": "https://doi.org/10.18632/oncotarget.1940"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24811539"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24811539"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Naoto Muraoka, Hiroyuki Yamakawa, Kazutaka Miyamoto, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO J (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.15252/embj.201387605"}], "href": "https://doi.org/10.15252/embj.201387605"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24920580"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24920580"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Jelena Stanisavljevic, Jordina Loubat-Casanovas, Mercedes Herrera, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-14-1903"}], "href": "https://doi.org/10.1158/0008-5472.CAN-14-1903"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25488750"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25488750"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "R Perdigão-Henriques, F Petrocca, G Altschuler, et al. "}, {"type": "b", "children": [{"type": "t", "text": "miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncogene (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/onc.2015.69"}], "href": "https://doi.org/10.1038/onc.2015.69"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25798844"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25798844"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "M Teresa Grande, Berta Sánchez-Laorden, Cristina López-Blau, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Med (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nm.3901"}], "href": "https://doi.org/10.1038/nm.3901"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26236989"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26236989"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Yi Tang, Tamar Feinberg, Evan T Keller, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb3394"}], "href": "https://doi.org/10.1038/ncb3394"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27479603"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27479603"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Wencheng Zhou, Xiaoting Mo, Wenhui Cui, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/srep38646"}], "href": "https://doi.org/10.1038/srep38646"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27982105"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27982105"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Tongzheng Liu, Jia Yu, Min Deng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms13923"}], "href": "https://doi.org/10.1038/ncomms13923"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28067227"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28067227"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Yi Tang, Stephen J Weiss "}, {"type": "b", "children": [{"type": "t", "text": "Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Cycle (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/15384101.2017.1280643"}], "href": "https://doi.org/10.1080/15384101.2017.1280643"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28112996"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28112996"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Marwa M Mahmoud, Jovana Serbanovic-Canic, Shuang Feng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41598-017-03532-z"}], "href": "https://doi.org/10.1038/s41598-017-03532-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28611395"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28611395"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Ji-Hyung Lee, Su Myung Jung, Kyung-Min Yang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb3609"}], "href": "https://doi.org/10.1038/ncb3609"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28892081"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28892081"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Haiyang Tang, Aleksandra Babicheva, Kimberly M McDermott, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Lung Cell Mol Physiol (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajplung.00096.2017"}], "href": "https://doi.org/10.1152/ajplung.00096.2017"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29074488"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29074488"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Julien Faget, Svenja Groeneveld, Gael Boivin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Neutrophils and Snail Orchestrate the Establishment of a Pro-tumor Microenvironment in Lung Cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Rep (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.celrep.2017.11.052"}], "href": "https://doi.org/10.1016/j.celrep.2017.11.052"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29241546"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29241546"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Mana Taki, Kaoru Abiko, Tsukasa Baba, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41467-018-03966-7"}], "href": "https://doi.org/10.1038/s41467-018-03966-7"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29703902"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29703902"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Hae-Yun Jung, Laurent Fattet, Jeff H Tsai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41556-019-0291-8"}], "href": "https://doi.org/10.1038/s41556-019-0291-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30804505"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30804505"}]}]}]}
Proteins PA24E_HUMAN
NCBI Gene ID 123745
API
Download Associations
Predicted Functions View PLA2G4E's ARCHS4 Predicted Functions.
Co-expressed Genes View PLA2G4E's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View PLA2G4E's ARCHS4 Predicted Functions.

Functional Associations

PLA2G4E has 3,393 functional associations with biological entities spanning 9 categories (molecular profile, organism, functional term, phrase or reference, disease, phenotype or trait, chemical, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 86 datasets.

Click the + buttons to view associations for PLA2G4E from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles tissues with high or low expression of PLA2G4E gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles tissues with high or low expression of PLA2G4E gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray tissue samples with high or low expression of PLA2G4E gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset.
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles tissues with high or low expression of PLA2G4E gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset.
BioGPS Human Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of PLA2G4E gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset.
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of PLA2G4E gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset.
CCLE Cell Line Gene CNV Profiles cell lines with high or low copy number of PLA2G4E gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset.
ChEA Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of PLA2G4E gene from the CHEA Transcription Factor Binding Site Profiles dataset.
ChEA Transcription Factor Targets transcription factors binding the promoter of PLA2G4E gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of PLA2G4E gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores cellular components containing PLA2G4E protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 cellular components containing PLA2G4E protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores cellular components co-occuring with PLA2G4E protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 cellular components co-occuring with PLA2G4E protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset.
COSMIC Cell Line Gene Mutation Profiles cell lines with PLA2G4E gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset.
dbGAP Gene-Trait Associations traits associated with PLA2G4E gene in GWAS and other genetic association datasets from the dbGAP Gene-Trait Associations dataset.
DepMap CRISPR Gene Dependency cell lines with fitness changed by PLA2G4E gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores diseases co-occuring with PLA2G4E gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with PLA2G4E gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with PLA2G4E gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with PLA2G4E gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
ENCODE Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at PLA2G4E gene from the ENCODE Histone Modification Site Profiles dataset.
ENCODE Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of PLA2G4E gene from the ENCODE Transcription Factor Binding Site Profiles dataset.
ENCODE Transcription Factor Targets transcription factors binding the promoter of PLA2G4E gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset.
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells PubMedIDs of publications reporting gene signatures containing PLA2G4E from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset.
GAD Gene-Disease Associations diseases associated with PLA2G4E gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.
GeneRIF Biological Term Annotations biological terms co-occuring with PLA2G4E gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.
GeneSigDB Published Gene Signatures PubMedIDs of publications reporting gene signatures containing PLA2G4E from the GeneSigDB Published Gene Signatures dataset.
GEO Signatures of Differentially Expressed Genes for Diseases disease perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset.
GEO Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations kinase perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset.
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations transcription factor perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Viral Infections virus perturbations changing expression of PLA2G4E gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset.
GO Biological Process Annotations 2015 biological processes involving PLA2G4E gene from the curated GO Biological Process Annotations 2015 dataset.
GO Biological Process Annotations 2023 biological processes involving PLA2G4E gene from the curated GO Biological Process Annotations 2023 dataset.
GO Biological Process Annotations 2025 biological processes involving PLA2G4E gene from the curated GO Biological Process Annotations2025 dataset.
GO Cellular Component Annotations 2015 cellular components containing PLA2G4E protein from the curated GO Cellular Component Annotations 2015 dataset.
GO Cellular Component Annotations 2023 cellular components containing PLA2G4E protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Cellular Component Annotations 2025 cellular components containing PLA2G4E protein from the curated GO Cellular Component Annotations 2025 dataset.
GO Molecular Function Annotations 2015 molecular functions performed by PLA2G4E gene from the curated GO Molecular Function Annotations 2015 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by PLA2G4E gene from the curated GO Molecular Function Annotations 2023 dataset.
GO Molecular Function Annotations 2025 molecular functions performed by PLA2G4E gene from the curated GO Molecular Function Annotations 2025 dataset.
GTEx eQTL 2025 SNPs regulating expression of PLA2G4E gene from the GTEx eQTL 2025 dataset.
GTEx Tissue Gene Expression Profiles tissues with high or low expression of PLA2G4E gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of PLA2G4E gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GTEx Tissue Sample Gene Expression Profiles tissue samples with high or low expression of PLA2G4E gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset.
GWASdb SNP-Disease Associations diseases associated with PLA2G4E gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset.
GWASdb SNP-Phenotype Associations phenotypes associated with PLA2G4E gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset.
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles cell lines with high or low expression of PLA2G4E gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset.
HMDB Metabolites of Enzymes interacting metabolites for PLA2G4E protein from the curated HMDB Metabolites of Enzymes dataset.
HPA Tissue Gene Expression Profiles tissues with high or low expression of PLA2G4E gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset.
HPA Tissue Protein Expression Profiles tissues with high or low expression of PLA2G4E protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset.
HPA Tissue Sample Gene Expression Profiles tissue samples with high or low expression of PLA2G4E gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset.
Hub Proteins Protein-Protein Interactions interacting hub proteins for PLA2G4E from the curated Hub Proteins Protein-Protein Interactions dataset.
HuGE Navigator Gene-Phenotype Associations phenotypes associated with PLA2G4E gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset.
HumanCyc Pathways pathways involving PLA2G4E protein from the HumanCyc Pathways dataset.
IMPC Knockout Mouse Phenotypes phenotypes of mice caused by PLA2G4E gene knockout from the IMPC Knockout Mouse Phenotypes dataset.
InterPro Predicted Protein Domain Annotations protein domains predicted for PLA2G4E protein from the InterPro Predicted Protein Domain Annotations dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles cell lines with high or low copy number of PLA2G4E gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset.
KnockTF Gene Expression Profiles with Transcription Factor Perturbations transcription factor perturbations changing expression of PLA2G4E gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset.
LOCATE Predicted Protein Localization Annotations cellular components predicted to contain PLA2G4E protein from the LOCATE Predicted Protein Localization Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by PLA2G4E gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MotifMap Predicted Transcription Factor Targets transcription factors regulating expression of PLA2G4E gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset.
MoTrPAC Rat Endurance Exercise Training tissue samples with high or low expression of PLA2G4E gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset.
MW Enzyme Metabolite Associations interacting metabolites for PLA2G4E protein from the MW Gene Metabolite Associations dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of PLA2G4E gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations gene perturbations changing expression of PLA2G4E gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PFOCR Pathway Figure Associations 2023 pathways involving PLA2G4E protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving PLA2G4E protein from the Wikipathways PFOCR 2024 dataset.
Reactome Pathways 2014 pathways involving PLA2G4E protein from the Reactome Pathways dataset.
Reactome Pathways 2024 pathways involving PLA2G4E protein from the Reactome Pathways 2024 dataset.
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles cell types and tissues with high or low DNA methylation of PLA2G4E gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset.
Roadmap Epigenomics Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at PLA2G4E gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of PLA2G4E gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of PLA2G4E gene from the RummaGEO Gene Perturbation Signatures dataset.
TargetScan Predicted Conserved microRNA Targets microRNAs regulating expression of PLA2G4E gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset.
TargetScan Predicted Nonconserved microRNA Targets microRNAs regulating expression of PLA2G4E gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset.
TCGA Signatures of Differentially Expressed Genes for Tumors tissue samples with high or low expression of PLA2G4E gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores tissues with high expression of PLA2G4E protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 tissues with high expression of PLA2G4E protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores tissues with high expression of PLA2G4E protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 tissues with high expression of PLA2G4E protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores tissues co-occuring with PLA2G4E protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 tissues co-occuring with PLA2G4E protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset.
WikiPathways Pathways 2024 pathways involving PLA2G4E protein from the WikiPathways Pathways 2024 dataset.