PTH Gene

HGNC Family Endogenous ligands
Name parathyroid hormone
Description This gene encodes a member of the parathyroid family of proteins. The encoded preproprotein is proteolytically processed to generate a protein that binds to the parathyroid hormone/parathyroid hormone-related peptide receptor and regulates blood calcium and phosphate levels. Excess production of the encoded protein, known as hyperparathyroidism, can result in hypercalcemia and kidney stones. On the other hand, defective processing of the encoded protein may lead to hypoparathyroidism, which can result in hypocalcemia and numbness. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2015]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nParathyroid hormone (PTH) is a master regulator of systemic mineral metabolism whose dysregulation is closely tied to chronic kidney disease (CKD), aging, and metabolic–cardiovascular disturbances. In patients with CKD, for example, studies demonstrate that elevations in fibroblast growth factor 23 (FGF23) occur early—even when serum phosphate and PTH levels remain within the normal range—suggesting that disturbances in mineral metabolism evolve in parallel with altered PTH dynamics. In addition, epidemiologic observations link rising PTH levels (especially in the context of low dietary calcium and vitamin D insufficiency) with adverse changes in bone mineral density and an increased cardiovascular risk. Such findings underscore the systemic impact of PTH dysregulation on bone turnover and cardiovascular health in at‐risk populations."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "15"}]}, {"type": "t", "text": ""}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nWithin bone tissue, PTH orchestrates a delicate balance between resorption and formation. On one hand, PTH stimulates osteoclastogenesis by directly enhancing receptor activator of nuclear factor–κB ligand (RANKL) transcription while suppressing osteoprotegerin (OPG) production via a cyclic AMP/protein kinase A (PKA)–CREB–dependent pathway. Concurrently, PTH promotes osteoblast survival and differentiation by decreasing apoptosis, modulating sclerostin expression, and inducing the synthesis of factors like ephrinB2 that favor osteoblast function. Moreover, intermittent PTH administration has been shown to synergize with mechanical loading to boost bone formation, reinforcing its dual anabolic and catabolic roles in skeletal remodeling."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "16", "end_ref": "25"}]}, {"type": "t", "text": ""}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nAt the molecular and cellular levels, PTH signals through complex intracellular cascades. Its receptor engagement triggers cyclic AMP–dependent pathways that interface with key regulators such as B‐Raf and various transcription factors, thus fine‐tuning gene expression programs critical for bone cell function. Genetic investigations have revealed that while common polymorphisms in the PTH gene itself may not always predict bone mineral density variations, alterations in PTH fragment processing and downstream signaling—as exemplified by its regulation of channels (e.g. TRPV5 via calmodulin) and the generation of non–(1–84) fragments—play important roles in modulating both classical and nonclassical responses in bone and mineral homeostasis."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "26", "end_ref": "36"}]}, {"type": "t", "text": ""}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its endocrine and autocrine actions within bone, the action of PTH is markedly influenced by biomechanical and immunological factors. Mechanical loading and exercise modulate PTH secretion and its downstream effects on bone remodeling—evidenced by studies using controlled calcium “clamping” protocols and dynamic loading models—and emerging data highlight a role for T lymphocytes in mediating PTH’s anabolic actions. Together, these findings integrate hormonal, mechanical, and osteoimmune signals into a comprehensive paradigm of PTH‐dependent regulation of bone remodeling."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "37", "end_ref": "40"}]}, {"type": "t", "text": ""}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Allan G Need, Peter D O'Loughlin, Howard A Morris, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The effects of age and other variables on serum parathyroid hormone in postmenopausal women attending an osteoporosis center."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Endocrinol Metab (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/jc.2003-031539"}], "href": "https://doi.org/10.1210/jc.2003-031539"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15070925"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15070925"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Madhava Rao Vupputuri, Ravinder Goswami, Nandita Gupta, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Prevalence and functional significance of 25-hydroxyvitamin D deficiency and vitamin D receptor gene polymorphisms in Asian Indians."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Clin Nutr (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/ajcn/83.6.1411"}], "href": "https://doi.org/10.1093/ajcn/83.6.1411"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16762954"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16762954"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Jared P Reis, Denise von Mühlen, Donna Kritz-Silverstein, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Vitamin D, parathyroid hormone levels, and the prevalence of metabolic syndrome in community-dwelling older adults."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Diabetes Care (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.2337/dc06-2438"}], "href": "https://doi.org/10.2337/dc06-2438"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17351276"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17351276"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Jared P Reis, Denise von Mühlen, Erin D Michos, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Serum vitamin D, parathyroid hormone levels, and carotid atherosclerosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Atherosclerosis (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.atherosclerosis.2009.05.030"}], "href": "https://doi.org/10.1016/j.atherosclerosis.2009.05.030"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19539290"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19539290"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Rodrigo B Oliveira, Ana L E Cancela, Fabiana G Graciolli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy?"}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin J Am Soc Nephrol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.2215/CJN.05420709"}], "href": "https://doi.org/10.2215/CJN.05420709"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19965540"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19965540"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Sharon M Moe, Akber Saifullah, Robert E LaClair, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin J Am Soc Nephrol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.2215/CJN.07131009"}], "href": "https://doi.org/10.2215/CJN.07131009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20056760"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20056760"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Feng-Xiao Bu, Laura Armas, Joan Lappe, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Genet (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00439-010-0881-9"}], "href": "https://doi.org/10.1007/s00439-010-0881-9"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20809279"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20809279"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Tamara Isakova, Patricia Wahl, Gabriela S Vargas, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Kidney Int (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ki.2011.47"}], "href": "https://doi.org/10.1038/ki.2011.47"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21389978"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21389978"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Bryan Kestenbaum, Ronit Katz, Ian de Boer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Vitamin D, parathyroid hormone, and cardiovascular events among older adults."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Coll Cardiol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.jacc.2011.03.069"}], "href": "https://doi.org/10.1016/j.jacc.2011.03.069"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21939825"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21939825"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Janet Y Hui, Jee Woong J Choi, David B Mount, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The independent association between parathyroid hormone levels and hyperuricemia: a national population study."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arthritis Res Ther (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/ar3769"}], "href": "https://doi.org/10.1186/ar3769"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22405053"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22405053"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Claudie Berger, Linda S Greene-Finestone, Lisa Langsetmo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jbmr.1587"}], "href": "https://doi.org/10.1002/jbmr.1587"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22407786"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22407786"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Nam-Seok Joo, Bess Dawson-Hughes, Young-Sang Kim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-3, 2009 and KNHANES V-1, 2010)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jbmr.1790"}], "href": "https://doi.org/10.1002/jbmr.1790"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23045165"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23045165"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Abdelouahid Tajar, David M Lee, Stephen R Pye, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The association of frailty with serum 25-hydroxyvitamin D and parathyroid hormone levels in older European men."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Age Ageing (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/ageing/afs162"}], "href": "https://doi.org/10.1093/ageing/afs162"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23111338"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23111338"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Julia J Scialla, Brad C Astor, Tamara Isakova, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mineral metabolites and CKD progression in African Americans."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2012070713"}], "href": "https://doi.org/10.1681/ASN.2012070713"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23243213"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23243213"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Emil Hagström, Karl Michaëlsson, Håkan Melhus, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Plasma-parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community-based cohorts."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arterioscler Thromb Vasc Biol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/ATVBAHA.113.303062"}], "href": "https://doi.org/10.1161/ATVBAHA.113.303062"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24626438"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24626438"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Qiang Fu, Robert L Jilka, Stavros C Manolagas, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Parathyroid hormone stimulates receptor activator of NFkappa B ligand and inhibits osteoprotegerin expression via protein kinase A activation of cAMP-response element-binding protein."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M208494200"}], "href": "https://doi.org/10.1074/jbc.M208494200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12364326"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12364326"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "J Sammons, N Ahmed, M El-Sheemy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The role of BMP-6, IL-6, and BMP-4 in mesenchymal stem cell-dependent bone development: effects on osteoblastic differentiation induced by parathyroid hormone and vitamin D(3)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Stem Cells Dev (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1089/154732804323099208"}], "href": "https://doi.org/10.1089/154732804323099208"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15186723"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15186723"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Eric C Buxton, Wei Yao, Nancy E Lane "}, {"type": "b", "children": [{"type": "t", "text": "Changes in serum receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and interleukin-6 levels in patients with glucocorticoid-induced osteoporosis treated with human parathyroid hormone (1-34)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Endocrinol Metab (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/jc.2003-032066"}], "href": "https://doi.org/10.1210/jc.2003-032066"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15240611"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15240611"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "N H Kulkarni, D L Halladay, R R Miles, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Effects of parathyroid hormone on Wnt signaling pathway in bone."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biochem (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jcb.20506"}], "href": "https://doi.org/10.1002/jcb.20506"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15962290"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15962290"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "T Bellido, A A Ali, I Gubrij, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Endocrinology (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1210/en.2005-0239"}], "href": "https://doi.org/10.1210/en.2005-0239"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16081646"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16081646"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Elizabeth H Allan, Karl D Häusler, Tao Wei, et al. "}, {"type": "b", "children": [{"type": "t", "text": "EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1359/jbmr.080324"}], "href": "https://doi.org/10.1359/jbmr.080324"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18627264"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18627264"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Emi Shimizu, Nagarajan Selvamurugan, Jennifer J Westendorf, et al. "}, {"type": "b", "children": [{"type": "t", "text": "HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109.094862"}], "href": "https://doi.org/10.1074/jbc.M109.094862"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20097749"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20097749"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Hesham Tawfeek, Brahmchetna Bedi, Jau-Yi Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0012290"}], "href": "https://doi.org/10.1371/journal.pone.0012290"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20808842"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20808842"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Farzin M Takyar, Stephen Tonna, Patricia W M Ho, et al. "}, {"type": "b", "children": [{"type": "t", "text": "EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jbmr.1820"}], "href": "https://doi.org/10.1002/jbmr.1820"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23165727"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23165727"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Maurizio Rossini, Ombretta Viapiana, Silvano Adami, et al. "}, {"type": "b", "children": [{"type": "t", "text": "In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin Exp Rheumatol (2015)"}]}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25438096"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25438096"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Takashi Fujita, Toru Meguro, Ryo Fukuyama, et al. "}, {"type": "b", "children": [{"type": "t", "text": "New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. Checkpoint of modulation by cyclic AMP."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110364200"}], "href": "https://doi.org/10.1074/jbc.M110364200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11956184"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11956184"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "V Dvornyk, X-H Liu, H Shen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Differentiation of Caucasians and Chinese at bone mass candidate genes: implication for ethnic difference of bone mass."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann Hum Genet (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1046/j.1469-1809.2003.00037.x"}], "href": "https://doi.org/10.1046/j.1469-1809.2003.00037.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12914574"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12914574"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Akira Suzuki, Keiichi Ozono, Takuo Kubota, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biochem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jcb.21626"}], "href": "https://doi.org/10.1002/jcb.21626"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17990294"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17990294"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Rupak Datta, Abdul Waheed, Gul N Shah, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0708725104"}], "href": "https://doi.org/10.1073/pnas.0708725104"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18056632"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18056632"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Richard Marsell, Elin Grundberg, Tijana Krajisnik, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Eur J Endocrinol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1530/EJE-07-0534"}], "href": "https://doi.org/10.1530/EJE-07-0534"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18166826"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18166826"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Deborah French, Leo H Hamilton, Leonard A Mattano, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Blood (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1182/blood-2007-11-123885"}], "href": "https://doi.org/10.1182/blood-2007-11-123885"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18285546"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18285546"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Fariba Ranjzad, Aidin Mahban, Atena Irani Shemirani, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Influence of gene variants related to calcium homeostasis on biochemical parameters of women with polycystic ovary syndrome."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Assist Reprod Genet (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10815-010-9506-4"}], "href": "https://doi.org/10.1007/s10815-010-9506-4"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21082232"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21082232"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Theun de Groot, Nadezda V Kovalevskaya, Sjoerd Verkaart, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.01319-10"}], "href": "https://doi.org/10.1128/MCB.01319-10"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21576356"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21576356"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Andrew P Sage, Jinxiu Lu, Elisa Atti, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jbmr.312"}], "href": "https://doi.org/10.1002/jbmr.312"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21611962"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21611962"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Pierre D'Amour, Jean-Hugues Brossard, Louise Rousseau, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structure of non-(1-84) PTH fragments secreted by parathyroid glands in primary and secondary hyperparathyroidism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Kidney Int (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1523-1755.2005.00493.x"}], "href": "https://doi.org/10.1111/j.1523-1755.2005.00493.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16105030"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16105030"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Hong-Wen Deng, Hui Shen, Fu-Hua Xu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1359/jbmr.2002.17.4.678"}], "href": "https://doi.org/10.1359/jbmr.2002.17.4.678"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11918225"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11918225"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Toshihiro Sugiyama, Leanne K Saxon, Gul Zaman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1-34) on trabecular and cortical bone in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Bone (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bone.2008.04.012"}], "href": "https://doi.org/10.1016/j.bone.2008.04.012"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18539556"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18539556"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Roberto Pacifici "}, {"type": "b", "children": [{"type": "t", "text": "T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann N Y Acad Sci (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/nyas.12969"}], "href": "https://doi.org/10.1111/nyas.12969"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26662934"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26662934"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Wendy M Kohrt, Sarah J Wherry, Pamela Wolfe, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Maintenance of Serum Ionized Calcium During Exercise Attenuates Parathyroid Hormone and Bone Resorption Responses."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Bone Miner Res (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/jbmr.3428"}], "href": "https://doi.org/10.1002/jbmr.3428"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29572961"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29572961"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Giovanni Lombardi, Ewa Ziemann, Giuseppe Banfi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Mol Sci (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/ijms21155388"}], "href": "https://doi.org/10.3390/ijms21155388"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32751307"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32751307"}]}]}]}
Synonyms PTH1
Proteins PTHY_HUMAN
NCBI Gene ID 5741
API
Download Associations
Predicted Functions View PTH's ARCHS4 Predicted Functions.
Co-expressed Genes View PTH's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View PTH's ARCHS4 Predicted Functions.

Functional Associations

PTH has 6,026 functional associations with biological entities spanning 8 categories (molecular profile, organism, disease, phenotype or trait, functional term, phrase or reference, chemical, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 82 datasets.

Click the + buttons to view associations for PTH from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles tissues with high or low expression of PTH gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray tissue samples with high or low expression of PTH gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset.
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles tissues with high or low expression of PTH gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset.
BioGPS Cell Line Gene Expression Profiles cell lines with high or low expression of PTH gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset.
BioGPS Human Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of PTH gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset.
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of PTH gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset.
CCLE Cell Line Gene CNV Profiles cell lines with high or low copy number of PTH gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset.
CCLE Cell Line Gene Expression Profiles cell lines with high or low expression of PTH gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset.
ChEA Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of PTH gene from the CHEA Transcription Factor Binding Site Profiles dataset.
ChEA Transcription Factor Targets transcription factors binding the promoter of PTH gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of PTH gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
ClinVar Gene-Phenotype Associations phenotypes associated with PTH gene from the curated ClinVar Gene-Phenotype Associations dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores cellular components containing PTH protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores cellular components co-occuring with PTH protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.
COSMIC Cell Line Gene CNV Profiles cell lines with high or low copy number of PTH gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset.
COSMIC Cell Line Gene Mutation Profiles cell lines with PTH gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset.
CTD Gene-Chemical Interactions chemicals interacting with PTH gene/protein from the curated CTD Gene-Chemical Interactions dataset.
CTD Gene-Disease Associations diseases associated with PTH gene/protein from the curated CTD Gene-Disease Associations dataset.
DepMap CRISPR Gene Dependency cell lines with fitness changed by PTH gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores diseases co-occuring with PTH gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with PTH gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with PTH gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with PTH gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
DrugBank Drug Targets interacting drugs for PTH protein from the curated DrugBank Drug Targets dataset.
ENCODE Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at PTH gene from the ENCODE Histone Modification Site Profiles dataset.
ENCODE Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of PTH gene from the ENCODE Transcription Factor Binding Site Profiles dataset.
ENCODE Transcription Factor Targets transcription factors binding the promoter of PTH gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset.
GAD Gene-Disease Associations diseases associated with PTH gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.
GAD High Level Gene-Disease Associations diseases associated with PTH gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset.
GDSC Cell Line Gene Expression Profiles cell lines with high or low expression of PTH gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset.
GeneRIF Biological Term Annotations biological terms co-occuring with PTH gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.
GeneSigDB Published Gene Signatures PubMedIDs of publications reporting gene signatures containing PTH from the GeneSigDB Published Gene Signatures dataset.
GEO Signatures of Differentially Expressed Genes for Diseases disease perturbations changing expression of PTH gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset.
GEO Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of PTH gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations kinase perturbations changing expression of PTH gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of PTH gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset.
GEO Signatures of Differentially Expressed Genes for Viral Infections virus perturbations changing expression of PTH gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset.
GO Biological Process Annotations 2015 biological processes involving PTH gene from the curated GO Biological Process Annotations 2015 dataset.
GO Biological Process Annotations 2023 biological processes involving PTH gene from the curated GO Biological Process Annotations 2023 dataset.
GO Cellular Component Annotations 2015 cellular components containing PTH protein from the curated GO Cellular Component Annotations 2015 dataset.
GO Molecular Function Annotations 2015 molecular functions performed by PTH gene from the curated GO Molecular Function Annotations 2015 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by PTH gene from the curated GO Molecular Function Annotations 2023 dataset.
GTEx Tissue Gene Expression Profiles tissues with high or low expression of PTH gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of PTH gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GWASdb SNP-Disease Associations diseases associated with PTH gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset.
GWASdb SNP-Phenotype Associations phenotypes associated with PTH gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset.
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles cell lines with high or low expression of PTH gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset.
HMDB Metabolites of Enzymes interacting metabolites for PTH protein from the curated HMDB Metabolites of Enzymes dataset.
HPA Tissue Protein Expression Profiles tissues with high or low expression of PTH protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset.
HPO Gene-Disease Associations phenotypes associated with PTH gene by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset.
Hub Proteins Protein-Protein Interactions interacting hub proteins for PTH from the curated Hub Proteins Protein-Protein Interactions dataset.
HuGE Navigator Gene-Phenotype Associations phenotypes associated with PTH gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset.
IMPC Knockout Mouse Phenotypes phenotypes of mice caused by PTH gene knockout from the IMPC Knockout Mouse Phenotypes dataset.
InterPro Predicted Protein Domain Annotations protein domains predicted for PTH protein from the InterPro Predicted Protein Domain Annotations dataset.
JASPAR Predicted Transcription Factor Targets transcription factors regulating expression of PTH gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles cell lines with high or low copy number of PTH gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset.
KnockTF Gene Expression Profiles with Transcription Factor Perturbations transcription factor perturbations changing expression of PTH gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset.
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures small molecule perturbations changing expression of PTH gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset.
LOCATE Curated Protein Localization Annotations cellular components containing PTH protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset.
LOCATE Predicted Protein Localization Annotations cellular components predicted to contain PTH protein from the LOCATE Predicted Protein Localization Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by PTH gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MiRTarBase microRNA Targets microRNAs targeting PTH gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset.
MotifMap Predicted Transcription Factor Targets transcription factors regulating expression of PTH gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset.
MPO Gene-Phenotype Associations phenotypes of transgenic mice caused by PTH gene mutations from the MPO Gene-Phenotype Associations dataset.
NURSA Protein Complexes protein complexs containing PTH protein recovered by IP-MS from the NURSA Protein Complexes dataset.
OMIM Gene-Disease Associations phenotypes associated with PTH gene from the curated OMIM Gene-Disease Associations dataset.
Pathway Commons Protein-Protein Interactions interacting proteins for PTH from the Pathway Commons Protein-Protein Interactions dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of PTH gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations gene perturbations changing expression of PTH gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
PFOCR Pathway Figure Associations 2023 pathways involving PTH protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving PTH protein from the Wikipathways PFOCR 2024 dataset.
Reactome Pathways 2014 pathways involving PTH protein from the Reactome Pathways dataset.
Reactome Pathways 2024 pathways involving PTH protein from the Reactome Pathways 2024 dataset.
Roadmap Epigenomics Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at PTH gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of PTH gene from the RummaGEO Gene Perturbation Signatures dataset.
TargetScan Predicted Conserved microRNA Targets microRNAs regulating expression of PTH gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset.
TargetScan Predicted Nonconserved microRNA Targets microRNAs regulating expression of PTH gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset.
TCGA Signatures of Differentially Expressed Genes for Tumors tissue samples with high or low expression of PTH gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores tissues with high expression of PTH protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores tissues co-occuring with PTH protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.
WikiPathways Pathways 2014 pathways involving PTH protein from the Wikipathways Pathways 2014 dataset.
WikiPathways Pathways 2024 pathways involving PTH protein from the WikiPathways Pathways 2024 dataset.