RHO Gene

HGNC Family G protein-coupled receptors
Name rhodopsin
Description The protein encoded by this gene is found in rod cells in the back of the eye and is essential for vision in low-light conditions. The encoded protein binds to 11-cis retinal and is activated when light hits the retinal molecule. Defects in this gene are a cause of congenital stationary night blindness. [provided by RefSeq, Aug 2017]
Summary
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nRhodopsin is the prototypical G protein–coupled receptor responsible for initiating vision by absorbing photons and undergoing a conformational change that transforms its 11‐cis retinal chromophore into the all‐trans form. This photoisomerization triggers a cascade of structural rearrangements—including changes in key motifs such as NPxxY and transitions in cytoplasmic helix 8—that open cytosolic cavities for selective coupling of downstream transducers. High‐resolution crystallography, nuclear magnetic resonance, and molecular dynamics studies have revealed how rhodopsin dynamically organizes its internal water channels and nanodomains in the disc membranes to achieve arrestin– and G protein–biased signaling."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "9"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nA wide spectrum of disease‐linked mutations in the RHO gene disrupts its precise folding, post‐translational modifications, and interactions with both chaperones and signal‐regulatory proteins. Such mutations can impair correct chromophore binding, promote misfolding and aberrant oligomerization, or alter the kinetics of receptor deactivation through abnormal phosphorylation and arrestin recruitment. These deficiencies underlie severe retinal degenerations such as autosomal–dominant retinitis pigmentosa and congenital stationary night blindness. In experimental animal models and cell‐based systems, studies have detailed how point mutations (including those affecting residues in the active site and elsewhere in the extracellular and cytoplasmic domains) interfere with rhodopsin’s maturation, trafficking, and downstream G protein activation, ultimately compromising photoreceptor cell viability."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "10", "end_ref": "23"}, {"type": "fg_f", "ref": "3"}, {"type": "fg_fs", "start_ref": "24", "end_ref": "40"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its central role in phototransduction, rhodopsin expression and trafficking are subject to a multilayered regulatory network that ensures proper folding in the endoplasmic reticulum, efficient incorporation of its chromophore, and accurate targeting to the specialized outer segment and primary cilia of rod photoreceptors. Recent studies have demonstrated that translational control mechanisms—including association with specific polyribosomes and microRNAs—as well as dedicated chaperones and trafficking effectors, are critical for maintaining the balance between receptor synthesis and turnover. Intriguingly, rhodopsin‐related opsins have also been detected in extraretinal tissues such as human epidermis, highlighting broader roles for these receptors in peripheral light sensing. Comparative analyses with light‐gated microbial rhodopsins further provide insights into the general principles of receptor activation by light."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "41", "end_ref": "43"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Pere Garriga, Joan Manyosa "}, {"type": "b", "children": [{"type": "t", "text": "The eye photoreceptor protein rhodopsin. Structural implications for retinal disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FEBS Lett (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0014-5793(02)03241-6"}], "href": "https://doi.org/10.1016/s0014-5793(02"}, {"type": "t", "text": "03241-6) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12297272"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12297272"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Olaf Fritze, Sławomir Filipek, Vladimir Kuksa, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0435715100"}], "href": "https://doi.org/10.1073/pnas.0435715100"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12601165"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12601165"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Shivani Ahuja, Markus Eilers, Amiram Hirshfeld, et al. "}, {"type": "b", "children": [{"type": "t", "text": "6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Chem Soc (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1021/ja9034768"}], "href": "https://doi.org/10.1021/ja9034768"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19795853"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19795853"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Syed M Noorwez, Reddy Ranjith K Sama, Shalesh Kaushal "}, {"type": "b", "children": [{"type": "t", "text": "Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109.043364"}], "href": "https://doi.org/10.1074/jbc.M109.043364"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19801547"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19801547"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Shuguang Yuan, Slawomir Filipek, Krzysztof Palczewski, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms5733"}], "href": "https://doi.org/10.1038/ncomms5733"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25203160"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25203160"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Allison M Whited, Paul S-H Park "}, {"type": "b", "children": [{"type": "t", "text": "Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbamem.2014.10.007"}], "href": "https://doi.org/10.1016/j.bbamem.2014.10.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25305340"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25305340"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Yanyong Kang, X Edward Zhou, Xiang Gao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature14656"}], "href": "https://doi.org/10.1038/nature14656"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26200343"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26200343"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "X Edward Zhou, Yuanzheng He, Parker W de Waal, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2017.07.002"}], "href": "https://doi.org/10.1016/j.cell.2017.07.002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28753425"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28753425"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Yanyong Kang, Oleg Kuybeda, Parker W de Waal, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cryo-EM structure of human rhodopsin bound to an inhibitory G protein."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41586-018-0215-y"}], "href": "https://doi.org/10.1038/s41586-018-0215-y"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29899450"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29899450"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "James W Kijas, Artur V Cideciyan, Tomas S Aleman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.082714499"}], "href": "https://doi.org/10.1073/pnas.082714499"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11972042"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11972042"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Michelle E Illing, Rahul S Rajan, Neil F Bence, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M204955200"}], "href": "https://doi.org/10.1074/jbc.M204955200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12091393"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12091393"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "J Paul Chapple, Michael E Cheetham "}, {"type": "b", "children": [{"type": "t", "text": "The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M212349200"}], "href": "https://doi.org/10.1074/jbc.M212349200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12754272"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12754272"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Jen-Zen Chuang, Carrie Vega, Wenjin Jun, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI21136"}], "href": "https://doi.org/10.1172/JCI21136"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15232620"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15232620"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Rahul S Rajan, Ron R Kopito "}, {"type": "b", "children": [{"type": "t", "text": "Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M406448200"}], "href": "https://doi.org/10.1074/jbc.M406448200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15509574"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15509574"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Liya Yuan, Mariko Kawada, Necat Havlioglu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Neurosci (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1523/JNEUROSCI.2399-04.2005"}], "href": "https://doi.org/10.1523/JNEUROSCI.2399-04.2005"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15659613"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15659613"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Hugo F Mendes, Jacqueline van der Spuy, J Paul Chapple, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Trends Mol Med (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molmed.2005.02.007"}], "href": "https://doi.org/10.1016/j.molmed.2005.02.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15823756"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15823756"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Anne Galy, Michel Joseph Roux, José Alain Sahel, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddi258"}], "href": "https://doi.org/10.1093/hmg/ddi258"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16049034"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16049034"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Michael A Sandberg, Bernard Rosner, Carol Weigel-DiFranco, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.06-0971"}], "href": "https://doi.org/10.1167/iovs.06-0971"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17325176"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17325176"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Tomas S Aleman, Artur V Cideciyan, Alexander Sumaroka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.07-1110"}], "href": "https://doi.org/10.1167/iovs.07-1110"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18385078"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18385078"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Christina Zeitz, Alecia K Gross, Dorothee Leifert, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.08-1717"}], "href": "https://doi.org/10.1167/iovs.08-1717"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18487375"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18487375"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Mamatha Gandra, Venkataramana Anandula, Vidhya Authiappan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Vis (2008)"}]}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18552984"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18552984"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Lucia Seminario-Vidal, Silvia Kreda, Lisa Jones, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho- and Ca2+-dependent signaling pathways."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109.004762"}], "href": "https://doi.org/10.1074/jbc.M109.004762"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19439413"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19439413"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Moe Tsutsumi, Kazuyuki Ikeyama, Sumiko Denda, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Expressions of rod and cone photoreceptor-like proteins in human epidermis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Dermatol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1600-0625.2009.00851.x"}], "href": "https://doi.org/10.1111/j.1600-0625.2009.00851.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19493002"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19493002"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Ana Griciuc, Liviu Aron, Giovanni Piccoli, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochim Biophys Acta (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbamcr.2010.01.008"}], "href": "https://doi.org/10.1016/j.bbamcr.2010.01.008"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20097236"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20097236"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Isabelle Audo, Gaël Manes, Saddek Mohand-Saïd, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Spectrum of rhodopsin mutations in French autosomal dominant rod-cone dystrophy patients."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.09-4766"}], "href": "https://doi.org/10.1167/iovs.09-4766"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20164459"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20164459"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Katherine M Malanson, Janis Lem "}, {"type": "b", "children": [{"type": "t", "text": "Rhodopsin-mediated retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Prog Mol Biol Transl Sci (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/S1877-1173(09)88001-0"}], "href": "https://doi.org/10.1016/S1877-1173(09"}, {"type": "t", "text": "88001-0) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20374723"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20374723"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Graeme Richard Clark, Paul Crowe, Dorota Muszynska, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ophthalmology (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ophtha.2010.02.029"}], "href": "https://doi.org/10.1016/j.ophtha.2010.02.029"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20591486"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20591486"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "C-K Chen, M L Woodruff, F S Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Physiol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1113/jphysiol.2010.191221"}], "href": "https://doi.org/10.1113/jphysiol.2010.191221"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20603337"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20603337"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Shannon Behrman, Diego Acosta-Alvear, Peter Walter "}, {"type": "b", "children": [{"type": "t", "text": "A CHOP-regulated microRNA controls rhodopsin expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.201010055"}], "href": "https://doi.org/10.1083/jcb.201010055"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21402790"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21402790"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Darwin Toledo, Eva Ramon, Mònica Aguilà, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M110.201517"}], "href": "https://doi.org/10.1074/jbc.M110.201517"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21940625"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21940625"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Yvona Ward, Ross Lake, Juan Juan Yin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-11-2381"}], "href": "https://doi.org/10.1158/0008-5472.CAN-11-2381"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21978933"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21978933"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "T J Hollingsworth, Alecia K Gross "}, {"type": "b", "children": [{"type": "t", "text": "Defective trafficking of rhodopsin and its role in retinal degenerations."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int Rev Cell Mol Biol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/B978-0-12-394304-0.00006-3"}], "href": "https://doi.org/10.1016/B978-0-12-394304-0.00006-3"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22251557"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22251557"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Fiona Blanco-Kelly, María García-Hoyos, Marta Cortón, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genotyping microarray: mutation screening in Spanish families with autosomal dominant retinitis pigmentosa."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Vis (2012)"}]}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22736939"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22736939"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Dimitra Athanasiou, Maria Kosmaoglou, Naheed Kanuga, et al. "}, {"type": "b", "children": [{"type": "t", "text": "BiP prevents rod opsin aggregation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.E12-02-0168"}], "href": "https://doi.org/10.1091/mbc.E12-02-0168"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22855534"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22855534"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Wei-Chieh Chiang, Nobuhiko Hiramatsu, Carissa Messah, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.12-10222"}], "href": "https://doi.org/10.1167/iovs.12-10222"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22956602"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22956602"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Ankita Singhal, Martin K Ostermaier, Sergey A Vishnivetskiy, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Insights into congenital stationary night blindness based on the structure of G90D rhodopsin."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/embor.2013.44"}], "href": "https://doi.org/10.1038/embor.2013.44"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23579341"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23579341"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "T J Hollingsworth, Alecia K Gross "}, {"type": "b", "children": [{"type": "t", "text": "The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.495184"}], "href": "https://doi.org/10.1074/jbc.M113.495184"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23940033"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23940033"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Chikwado A Opefi, Kieron South, Christopher A Reynolds, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M113.483032"}], "href": "https://doi.org/10.1074/jbc.M113.483032"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24106275"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24106275"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Ankita Singhal, Ying Guo, Milos Matkovic, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural role of the T94I rhodopsin mutation in congenital stationary night blindness."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.15252/embr.201642671"}], "href": "https://doi.org/10.15252/embr.201642671"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27458239"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27458239"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Dimitra Athanasiou, Monica Aguila, Chikwado A Opefi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddw387"}], "href": "https://doi.org/10.1093/hmg/ddw387"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28065882"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28065882"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Sarah E Mortimer, Dong Xu, Dharia McGrew, et al. "}, {"type": "b", "children": [{"type": "t", "text": "IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M806143200"}], "href": "https://doi.org/10.1074/jbc.M806143200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18974094"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18974094"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Jing Wang, Dusanka Deretic "}, {"type": "b", "children": [{"type": "t", "text": "The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.162925"}], "href": "https://doi.org/10.1242/jcs.162925"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25673879"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25673879"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "Mizuki Takemoto, Hideaki E Kato, Michio Koyama, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0131094"}], "href": "https://doi.org/10.1371/journal.pone.0131094"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26114863"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26114863"}]}]}]}
Synonyms RP4, CSNBAD1, OPN2
Proteins OPSD_HUMAN
NCBI Gene ID 6010
API
Download Associations
Predicted Functions View RHO's ARCHS4 Predicted Functions.
Co-expressed Genes View RHO's ARCHS4 Predicted Functions.
Expression in Tissues and Cell Lines View RHO's ARCHS4 Predicted Functions.

Functional Associations

RHO has 5,991 functional associations with biological entities spanning 8 categories (molecular profile, organism, functional term, phrase or reference, disease, phenotype or trait, chemical, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 100 datasets.

Click the + buttons to view associations for RHO from the datasets below.

If available, associations are ranked by standardized value

Dataset Summary
Achilles Cell Line Gene Essentiality Profiles cell lines with fitness changed by RHO gene knockdown relative to other cell lines from the Achilles Cell Line Gene Essentiality Profiles dataset.
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles tissues with high or low expression of RHO gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset.
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray tissue samples with high or low expression of RHO gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset.
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles tissues with high or low expression of RHO gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset.
Biocarta Pathways pathways involving RHO protein from the Biocarta Pathways dataset.
BioGPS Cell Line Gene Expression Profiles cell lines with high or low expression of RHO gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset.
BioGPS Human Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of RHO gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset.
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles cell types and tissues with high or low expression of RHO gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset.
CCLE Cell Line Gene CNV Profiles cell lines with high or low copy number of RHO gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset.
CCLE Cell Line Gene Expression Profiles cell lines with high or low expression of RHO gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset.
ChEA Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of RHO gene from the CHEA Transcription Factor Binding Site Profiles dataset.
ChEA Transcription Factor Targets transcription factors binding the promoter of RHO gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset.
ChEA Transcription Factor Targets 2022 transcription factors binding the promoter of RHO gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset.
ClinVar Gene-Phenotype Associations phenotypes associated with RHO gene from the curated ClinVar Gene-Phenotype Associations dataset.
CMAP Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of RHO gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset.
COMPARTMENTS Curated Protein Localization Evidence Scores cellular components containing RHO protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset.
COMPARTMENTS Text-mining Protein Localization Evidence Scores cellular components co-occuring with RHO protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset.
COSMIC Cell Line Gene CNV Profiles cell lines with high or low copy number of RHO gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset.
COSMIC Cell Line Gene Mutation Profiles cell lines with RHO gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset.
CTD Gene-Chemical Interactions chemicals interacting with RHO gene/protein from the curated CTD Gene-Chemical Interactions dataset.
CTD Gene-Disease Associations diseases associated with RHO gene/protein from the curated CTD Gene-Disease Associations dataset.
DepMap CRISPR Gene Dependency cell lines with fitness changed by RHO gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset.
DEPOD Substrates of Phosphatases phosphatases that dephosphorylate RHO protein from the curated DEPOD Substrates of Phosphatases dataset.
DISEASES Curated Gene-Disease Association Evidence Scores diseases involving RHO gene from the DISEASES Curated Gene-Disease Assocation Evidence Scores dataset.
DISEASES Curated Gene-Disease Association Evidence Scores 2025 diseases involving RHO gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset.
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 diseases associated with RHO gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores diseases co-occuring with RHO gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset.
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 diseases co-occuring with RHO gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset.
DisGeNET Gene-Disease Associations diseases associated with RHO gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset.
DisGeNET Gene-Phenotype Associations phenotypes associated with RHO gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset.
DrugBank Drug Targets interacting drugs for RHO protein from the curated DrugBank Drug Targets dataset.
ENCODE Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at RHO gene from the ENCODE Histone Modification Site Profiles dataset.
ENCODE Transcription Factor Binding Site Profiles transcription factor binding site profiles with transcription factor binding evidence at the promoter of RHO gene from the ENCODE Transcription Factor Binding Site Profiles dataset.
ENCODE Transcription Factor Targets transcription factors binding the promoter of RHO gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset.
GAD Gene-Disease Associations diseases associated with RHO gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset.
GAD High Level Gene-Disease Associations diseases associated with RHO gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset.
GDSC Cell Line Gene Expression Profiles cell lines with high or low expression of RHO gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset.
GeneRIF Biological Term Annotations biological terms co-occuring with RHO gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset.
GeneSigDB Published Gene Signatures PubMedIDs of publications reporting gene signatures containing RHO from the GeneSigDB Published Gene Signatures dataset.
GEO Signatures of Differentially Expressed Genes for Diseases disease perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset.
GEO Signatures of Differentially Expressed Genes for Gene Perturbations gene perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations kinase perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Small Molecules small molecule perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset.
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations transcription factor perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset.
GEO Signatures of Differentially Expressed Genes for Viral Infections virus perturbations changing expression of RHO gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset.
GlyGen Glycosylated Proteins ligands (chemical) binding RHO protein from the GlyGen Glycosylated Proteins dataset.
GO Biological Process Annotations 2015 biological processes involving RHO gene from the curated GO Biological Process Annotations 2015 dataset.
GO Biological Process Annotations 2023 biological processes involving RHO gene from the curated GO Biological Process Annotations 2023 dataset.
GO Cellular Component Annotations 2015 cellular components containing RHO protein from the curated GO Cellular Component Annotations 2015 dataset.
GO Cellular Component Annotations 2023 cellular components containing RHO protein from the curated GO Cellular Component Annotations 2023 dataset.
GO Molecular Function Annotations 2015 molecular functions performed by RHO gene from the curated GO Molecular Function Annotations 2015 dataset.
GO Molecular Function Annotations 2023 molecular functions performed by RHO gene from the curated GO Molecular Function Annotations 2023 dataset.
GTEx Tissue Gene Expression Profiles tissues with high or low expression of RHO gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset.
GTEx Tissue Gene Expression Profiles 2023 tissues with high or low expression of RHO gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset.
GTEx Tissue Sample Gene Expression Profiles tissue samples with high or low expression of RHO gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset.
GWASdb SNP-Disease Associations diseases associated with RHO gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset.
GWASdb SNP-Phenotype Associations phenotypes associated with RHO gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset.
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles cell lines with high or low expression of RHO gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset.
HMDB Metabolites of Enzymes interacting metabolites for RHO protein from the curated HMDB Metabolites of Enzymes dataset.
HPA Tissue Gene Expression Profiles tissues with high or low expression of RHO gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset.
HPO Gene-Disease Associations phenotypes associated with RHO gene by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset.
Hub Proteins Protein-Protein Interactions interacting hub proteins for RHO from the curated Hub Proteins Protein-Protein Interactions dataset.
HuBMAP ASCT+B Annotations cell types associated with RHO gene from the HuBMAP ASCT+B dataset.
HuBMAP ASCT+B Augmented with RNA-seq Coexpression cell types associated with RHO gene from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset.
HuGE Navigator Gene-Phenotype Associations phenotypes associated with RHO gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset.
InterPro Predicted Protein Domain Annotations protein domains predicted for RHO protein from the InterPro Predicted Protein Domain Annotations dataset.
JASPAR Predicted Transcription Factor Targets transcription factors regulating expression of RHO gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset.
KEA Substrates of Kinases kinases that phosphorylate RHO protein from the curated KEA Substrates of Kinases dataset.
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles cell lines with high or low copy number of RHO gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset.
KnockTF Gene Expression Profiles with Transcription Factor Perturbations transcription factor perturbations changing expression of RHO gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset.
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures small molecule perturbations changing expression of RHO gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset.
LOCATE Curated Protein Localization Annotations cellular components containing RHO protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset.
LOCATE Predicted Protein Localization Annotations cellular components predicted to contain RHO protein from the LOCATE Predicted Protein Localization Annotations dataset.
MGI Mouse Phenotype Associations 2023 phenotypes of transgenic mice caused by RHO gene mutations from the MGI Mouse Phenotype Associations 2023 dataset.
MotifMap Predicted Transcription Factor Targets transcription factors regulating expression of RHO gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset.
MPO Gene-Phenotype Associations phenotypes of transgenic mice caused by RHO gene mutations from the MPO Gene-Phenotype Associations dataset.
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations gene perturbations changing expression of RHO gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset.
OMIM Gene-Disease Associations phenotypes associated with RHO gene from the curated OMIM Gene-Disease Associations dataset.
PANTHER Pathways pathways involving RHO protein from the PANTHER Pathways dataset.
Pathway Commons Protein-Protein Interactions interacting proteins for RHO from the Pathway Commons Protein-Protein Interactions dataset.
PFOCR Pathway Figure Associations 2023 pathways involving RHO protein from the PFOCR Pathway Figure Associations 2023 dataset.
PFOCR Pathway Figure Associations 2024 pathways involving RHO protein from the Wikipathways PFOCR 2024 dataset.
Phosphosite Textmining Biological Term Annotations biological terms co-occuring with RHO protein in abstracts of publications describing phosphosites from the Phosphosite Textmining Biological Term Annotations dataset.
PhosphoSitePlus Substrates of Kinases kinases that phosphorylate RHO protein from the curated PhosphoSitePlus Substrates of Kinases dataset.
PID Pathways pathways involving RHO protein from the PID Pathways dataset.
Reactome Pathways 2014 pathways involving RHO protein from the Reactome Pathways dataset.
Reactome Pathways 2024 pathways involving RHO protein from the Reactome Pathways 2024 dataset.
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles cell types and tissues with high or low DNA methylation of RHO gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset.
Roadmap Epigenomics Histone Modification Site Profiles histone modification site profiles with high histone modification abundance at RHO gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset.
RummaGEO Drug Perturbation Signatures drug perturbations changing expression of RHO gene from the RummaGEO Drug Perturbation Signatures dataset.
RummaGEO Gene Perturbation Signatures gene perturbations changing expression of RHO gene from the RummaGEO Gene Perturbation Signatures dataset.
Tabula Sapiens Gene-Cell Associations cell types with high or low expression of RHO gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset.
TargetScan Predicted Conserved microRNA Targets microRNAs regulating expression of RHO gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset.
TargetScan Predicted Nonconserved microRNA Targets microRNAs regulating expression of RHO gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset.
TCGA Signatures of Differentially Expressed Genes for Tumors tissue samples with high or low expression of RHO gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset.
TISSUES Curated Tissue Protein Expression Evidence Scores tissues with high expression of RHO protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset.
TISSUES Experimental Tissue Protein Expression Evidence Scores tissues with high expression of RHO protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset.
TISSUES Text-mining Tissue Protein Expression Evidence Scores tissues co-occuring with RHO protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset.
WikiPathways Pathways 2014 pathways involving RHO protein from the Wikipathways Pathways 2014 dataset.
WikiPathways Pathways 2024 pathways involving RHO protein from the WikiPathways Pathways 2024 dataset.