HGNC Family | Sterile alpha motif (SAM) domain containing (SAMD) |
Name | stromal interaction molecule 1 |
Description | This gene encodes a type 1 transmembrane protein that mediates Ca2+ influx after depletion of intracellular Ca2+ stores by gating of store-operated Ca2+ influx channels (SOCs). It is one of several genes located in the imprinted gene domain of 11p15.5, an important tumor-suppressor gene region. Alterations in this region have been associated with the Beckwith-Wiedemann syndrome, Wilms tumor, rhabdomyosarcoma, adrenocrotical carcinoma, and lung, ovarian, and breast cancer. This gene may play a role in malignancies and disease that involve this region, as well as early hematopoiesis, by mediating attachment to stromal cells. Mutations in this gene are associated with fatal classic Kaposi sarcoma, immunodeficiency due to defects in store-operated calcium entry (SOCE) in fibroblasts, ectodermal dysplasia and tubular aggregate myopathy. This gene is oriented in a head-to-tail configuration with the ribonucleotide reductase 1 gene (RRM1), with the 3' end of this gene situated 1.6 kb from the 5' end of the RRM1 gene. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nSTIM1 functions as an endoplasmic reticulum (ER) Ca²⁺ sensor that detects decreases in luminal Ca²⁺ levels and, in response, undergoes rapid conformational changes and oligomerization. This event triggers its translocation from a diffuse ER distribution to discrete puncta positioned at ER–plasma membrane junctions. There, STIM1 “activates” store‐operated Ca²⁺ entry (SOCE) by physically coupling to, and gating, Ca²⁺ channels such as Orai1. These studies demonstrate that the EF‐hand and sterile alpha–motif (SAM) domains mediate calcium binding and oligomerization, thereby linking ER Ca²⁺ store depletion to channel activation through localized clustering in strategically apposed membrane regions."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "18"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nElucidation of STIM1’s domains has revealed that specific segments—most notably its minimal Ca²⁺ release-activated Ca²⁺ (CRAC) activation region (often termed SOAR) and coiled–coil domains—mediate direct interactions with Orai1’s cytosolic regions, ultimately triggering channel opening. Mutational analyses have shown that disruption or constitutive activation of these regions can dramatically alter Ca²⁺ influx, leading either to a loss of SOCE or to its aberrant, store–independent activation. These molecular insights highlight that, beyond mere clustering, defined electrostatic and structural interactions between STIM1 and its channel partners (including, in some contexts, TRPC proteins) underlie fine regulation of channel gating, ion selectivity, and the kinetics of Ca²⁺ entry."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "19", "end_ref": "34"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its canonical role in mediating SOCE, STIM1 is now appreciated as a multifunctional regulator whose dysregulation can impact diverse physiological processes. Its ability to modulate Ca²⁺ influx is critical for T cell activation, muscle function, and even cancer cell migration and metastasis. Moreover, emerging evidence points to roles for STIM1 in the remodeling of ER–plasma membrane junctions, in the suppression of voltage–gated Ca²⁺ channels, and in interfacing with innate immune mediators such as STING. Such findings underscore the clinical relevance of STIM1, as mutations in its functional domains are linked to immunodeficiency, myopathy, and bleeding disorders, highlighting the centrality of controlled Ca²⁺ homeostasis in human health."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "35", "end_ref": "44"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Jen Liou, Man Lyang Kim, Won Do Heo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Curr Biol (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cub.2005.05.055"}], "href": "https://doi.org/10.1016/j.cub.2005.05.055"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16005298"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16005298"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Maria A Spassova, Jonathan Soboloff, Li-Ping He, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0510050103"}], "href": "https://doi.org/10.1073/pnas.0510050103"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16537481"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16537481"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Christine Peinelt, Monika Vig, Dana L Koomoa, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Amplification of CRAC current by STIM1 and CRACM1 (Orai1)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1435"}], "href": "https://doi.org/10.1038/ncb1435"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16733527"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16733527"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Jonathan Soboloff, Maria A Spassova, Xiang D Tang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Orai1 and STIM reconstitute store-operated calcium channel function."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.C600126200"}], "href": "https://doi.org/10.1074/jbc.C600126200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16766533"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16766533"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Jonathan Soboloff, Maria A Spassova, Thamara Hewavitharana, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Curr Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cub.2006.05.051"}], "href": "https://doi.org/10.1016/j.cub.2006.05.051"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16860747"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16860747"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "José J López, Ginés M Salido, José A Pariente, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M604272200"}], "href": "https://doi.org/10.1074/jbc.M604272200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16870612"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16870612"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Guo N Huang, Weizhong Zeng, Joo Young Kim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1454"}], "href": "https://doi.org/10.1038/ncb1454"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16906149"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16906149"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Minnie M Wu, JoAnn Buchanan, Riina M Luik, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.200604014"}], "href": "https://doi.org/10.1083/jcb.200604014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16966422"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16966422"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Joseph P Yuan, Weizhong Zeng, Guo N Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1590"}], "href": "https://doi.org/10.1038/ncb1590"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17486119"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17486119"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Jen Liou, Marc Fivaz, Takanari Inoue, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0702866104"}], "href": "https://doi.org/10.1073/pnas.0702866104"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17517596"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17517596"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Péter Várnai, Balázs Tóth, Dániel J Tóth, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M704339200"}], "href": "https://doi.org/10.1074/jbc.M704339200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17684017"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17684017"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Zhengzheng Li, Jingze Lu, Pingyong Xu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M703573200"}], "href": "https://doi.org/10.1074/jbc.M703573200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17702753"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17702753"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Martin Muik, Irene Frischauf, Isabella Derler, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M708898200"}], "href": "https://doi.org/10.1074/jbc.M708898200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18187424"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18187424"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Ilya Grigoriev, Susana Montenegro Gouveia, Babet van der Vaart, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Curr Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cub.2007.12.050"}], "href": "https://doi.org/10.1016/j.cub.2007.12.050"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18249114"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18249114"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Maria I Lioudyno, J Ashot Kozak, Aubin Penna, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0706122105"}], "href": "https://doi.org/10.1073/pnas.0706122105"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18250319"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18250319"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Kwong Tai Cheng, Xibao Liu, Hwei Ling Ong, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.C800008200"}], "href": "https://doi.org/10.1074/jbc.C800008200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18326500"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18326500"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Christine Peinelt, Annette Lis, Andreas Beck, et al. "}, {"type": "b", "children": [{"type": "t", "text": "2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Physiol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1113/jphysiol.2008.151365"}], "href": "https://doi.org/10.1113/jphysiol.2008.151365"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18403424"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18403424"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Charbel El Boustany, Gabriel Bidaux, Antoine Enfissi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hepatology (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/hep.22263"}], "href": "https://doi.org/10.1002/hep.22263"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18506892"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18506892"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Iskandar F Abdullaev, Jonathan M Bisaillon, Marie Potier, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/01.RES.0000338496.95579.56"}], "href": "https://doi.org/10.1161/01.RES.0000338496.95579.56"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18845811"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18845811"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Peter B Stathopulos, Le Zheng, Guang-Yao Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2008.08.006"}], "href": "https://doi.org/10.1016/j.cell.2008.08.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18854159"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18854159"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Weizhong Zeng, Joseph P Yuan, Min Seuk Kim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.molcel.2008.09.020"}], "href": "https://doi.org/10.1016/j.molcel.2008.09.020"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18995841"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18995841"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Joseph P Yuan, Weizhong Zeng, Michael R Dorwart, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SOAR and the polybasic STIM1 domains gate and regulate Orai channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb1842"}], "href": "https://doi.org/10.1038/ncb1842"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19182790"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19182790"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Shengyu Yang, J Jillian Zhang, Xin-Yun Huang "}, {"type": "b", "children": [{"type": "t", "text": "Orai1 and STIM1 are critical for breast tumor cell migration and metastasis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Cell (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ccr.2008.12.019"}], "href": "https://doi.org/10.1016/j.ccr.2008.12.019"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19185847"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19185847"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Martin Muik, Marc Fahrner, Isabella Derler, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.C800229200"}], "href": "https://doi.org/10.1074/jbc.C800229200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19189966"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19189966"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Chan Young Park, Paul J Hoover, Franklin M Mullins, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2009.02.014"}], "href": "https://doi.org/10.1016/j.cell.2009.02.014"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19249086"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19249086"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Wayne I DeHaven, Bertina F Jones, John G Petranka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TRPC channels function independently of STIM1 and Orai1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Physiol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1113/jphysiol.2009.170431"}], "href": "https://doi.org/10.1113/jphysiol.2009.170431"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19332491"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19332491"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Capucine Picard, Christie-Ann McCarl, Alexander Papolos, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "N Engl J Med (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1056/NEJMoa0900082"}], "href": "https://doi.org/10.1056/NEJMoa0900082"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19420366"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19420366"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Takumi Kawasaki, Ingo Lange, Stefan Feske "}, {"type": "b", "children": [{"type": "t", "text": "A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2009.05.020"}], "href": "https://doi.org/10.1016/j.bbrc.2009.05.020"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19433061"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19433061"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Stefan Feske "}, {"type": "b", "children": [{"type": "t", "text": "ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunol Rev (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1600-065X.2009.00818.x"}], "href": "https://doi.org/10.1111/j.1600-065X.2009.00818.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19754898"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19754898"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Lelio Orci, Mariella Ravazzola, Marion Le Coadic, et al. "}, {"type": "b", "children": [{"type": "t", "text": "From the Cover: STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0911280106"}], "href": "https://doi.org/10.1073/pnas.0911280106"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19906989"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19906989"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Minji Byun, Avinash Abhyankar, Virginie Lelarge, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20101597"}], "href": "https://doi.org/10.1084/jem.20101597"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20876309"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20876309"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Chan Young Park, Aleksandr Shcheglovitov, Ricardo Dolmetsch "}, {"type": "b", "children": [{"type": "t", "text": "The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Science (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/science.1191027"}], "href": "https://doi.org/10.1126/science.1191027"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20929812"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20929812"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Marek K Korzeniowski, Isabel Martín Manjarrés, Peter Varnai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Activation of STIM1-Orai1 involves an intramolecular switching mechanism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Signal (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1126/scisignal.2001122"}], "href": "https://doi.org/10.1126/scisignal.2001122"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21081754"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21081754"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Martin Muik, Marc Fahrner, Rainer Schindl, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO J (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/emboj.2011.79"}], "href": "https://doi.org/10.1038/emboj.2011.79"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21427704"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21427704"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Yih-Fung Chen, Wen-Tai Chiu, Ying-Ting Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1103315108"}], "href": "https://doi.org/10.1073/pnas.1103315108"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21876174"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21876174"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Xue Yang, Hao Jin, Xiangyu Cai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1118947109"}], "href": "https://doi.org/10.1073/pnas.1118947109"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22451904"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22451904"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Jonathan Soboloff, Brad S Rothberg, Muniswamy Madesh, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM proteins: dynamic calcium signal transducers."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Rev Mol Cell Biol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nrm3414"}], "href": "https://doi.org/10.1038/nrm3414"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22914293"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22914293"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Rajender K Motiani, María C Hyzinski-García, Xuexin Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Pflugers Arch (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s00424-013-1254-8"}], "href": "https://doi.org/10.1007/s00424-013-1254-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23515871"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23515871"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Peter B Stathopulos, Rainer Schindl, Marc Fahrner, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms3963"}], "href": "https://doi.org/10.1038/ncomms3963"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24351972"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24351972"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Feng-Chiao Tsai, Akiko Seki, Hee Won Yang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb2906"}], "href": "https://doi.org/10.1038/ncb2906"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24463606"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24463606"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Vasyl Nesin, Graham Wiley, Maria Kousi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1312520111"}], "href": "https://doi.org/10.1073/pnas.1312520111"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24591628"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24591628"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Ji Jing, Lian He, Aomin Sun, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca²⁺ influx."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Cell Biol (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncb3234"}], "href": "https://doi.org/10.1038/ncb3234"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26322679"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26322679"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "Rodrigo S Lacruz, Stefan Feske "}, {"type": "b", "children": [{"type": "t", "text": "Diseases caused by mutations in ORAI1 and STIM1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ann N Y Acad Sci (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/nyas.12938"}], "href": "https://doi.org/10.1111/nyas.12938"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26469693"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26469693"}]}, {"type": "r", "ref": 44, "children": [{"type": "t", "text": "Sonal Srikanth, Jin Seok Woo, Beibei Wu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Ca"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "2+"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": " sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Immunol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41590-018-0287-8"}], "href": "https://doi.org/10.1038/s41590-018-0287-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30643259"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30643259"}]}]}]}
|
Synonyms | STRMK, TAM1, D11S4896E, IMD10, GOK, TAM |
Proteins | STIM1_HUMAN |
NCBI Gene ID | 6786 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
STIM1 has 9,803 functional associations with biological entities spanning 9 categories (molecular profile, organism, disease, phenotype or trait, chemical, functional term, phrase or reference, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 129 datasets.
Click the + buttons to view associations for STIM1 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of STIM1 gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of STIM1 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of STIM1 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of STIM1 gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of STIM1 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CCLE Cell Line Proteomics | Cell lines associated with STIM1 protein from the CCLE Cell Line Proteomics dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of STIM1 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of STIM1 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of STIM1 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
ClinVar Gene-Phenotype Associations | phenotypes associated with STIM1 gene from the curated ClinVar Gene-Phenotype Associations dataset. | |
CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of STIM1 gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing STIM1 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing STIM1 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Experimental Protein Localization Evidence Scores | cellular components containing STIM1 protein in low- or high-throughput protein localization assays from the COMPARTMENTS Experimental Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 | cellular components containing STIM1 protein in low- or high-throughput protein localization assays from the COMPARTMENTS Experimental Protein Localization Evidence Scores 2025 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores | cellular components co-occuring with STIM1 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with STIM1 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of STIM1 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with STIM1 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with STIM1 gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with STIM1 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
dbGAP Gene-Trait Associations | traits associated with STIM1 gene in GWAS and other genetic association datasets from the dbGAP Gene-Trait Associations dataset. | |
DeepCoverMOA Drug Mechanisms of Action | small molecule perturbations with high or low expression of STIM1 protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by STIM1 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Curated Gene-Disease Association Evidence Scores | diseases involving STIM1 gene from the DISEASES Curated Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Curated Gene-Disease Association Evidence Scores 2025 | diseases involving STIM1 gene from the DISEASES Curated Gene-Disease Association Evidence Scores 2025 dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores | diseases associated with STIM1 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 | diseases associated with STIM1 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores | diseases co-occuring with STIM1 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with STIM1 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with STIM1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
DisGeNET Gene-Phenotype Associations | phenotypes associated with STIM1 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Phenoptype Associations dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at STIM1 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of STIM1 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of STIM1 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing STIM1 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GAD Gene-Disease Associations | diseases associated with STIM1 gene in GWAS and other genetic association datasets from the GAD Gene-Disease Associations dataset. | |
GAD High Level Gene-Disease Associations | diseases associated with STIM1 gene in GWAS and other genetic association datasets from the GAD High Level Gene-Disease Associations dataset. | |
GDSC Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the GDSC Cell Line Gene Expression Profiles dataset. | |
GeneRIF Biological Term Annotations | biological terms co-occuring with STIM1 gene in literature-supported statements describing functions of genes from the GeneRIF Biological Term Annotations dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing STIM1 from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of STIM1 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GlyGen Glycosylated Proteins | ligands (chemical) binding STIM1 protein from the GlyGen Glycosylated Proteins dataset. | |
GO Biological Process Annotations 2015 | biological processes involving STIM1 gene from the curated GO Biological Process Annotations 2015 dataset. | |
GO Biological Process Annotations 2023 | biological processes involving STIM1 gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving STIM1 gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing STIM1 protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing STIM1 protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing STIM1 protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GO Molecular Function Annotations 2015 | molecular functions performed by STIM1 gene from the curated GO Molecular Function Annotations 2015 dataset. | |
GO Molecular Function Annotations 2023 | molecular functions performed by STIM1 gene from the curated GO Molecular Function Annotations 2023 dataset. | |
GO Molecular Function Annotations 2025 | molecular functions performed by STIM1 gene from the curated GO Molecular Function Annotations 2025 dataset. | |
GTEx eQTL 2025 | SNPs regulating expression of STIM1 gene from the GTEx eQTL 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of STIM1 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of STIM1 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GWASdb SNP-Disease Associations | diseases associated with STIM1 gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset. | |
GWASdb SNP-Phenotype Associations | phenotypes associated with STIM1 gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset. | |
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset. | |
HMDB Metabolites of Enzymes | interacting metabolites for STIM1 protein from the curated HMDB Metabolites of Enzymes dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of STIM1 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of STIM1 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
HPM Cell Type and Tissue Protein Expression Profiles | cell types and tissues with high or low expression of STIM1 protein relative to other cell types and tissues from the HPM Cell Type and Tissue Protein Expression Profiles dataset. | |
HPO Gene-Disease Associations | phenotypes associated with STIM1 gene by mapping known disease genes to disease phenotypes from the HPO Gene-Disease Associations dataset. | |
Hub Proteins Protein-Protein Interactions | interacting hub proteins for STIM1 from the curated Hub Proteins Protein-Protein Interactions dataset. | |
HuGE Navigator Gene-Phenotype Associations | phenotypes associated with STIM1 gene by text-mining GWAS publications from the HuGE Navigator Gene-Phenotype Associations dataset. | |
IMPC Knockout Mouse Phenotypes | phenotypes of mice caused by STIM1 gene knockout from the IMPC Knockout Mouse Phenotypes dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for STIM1 protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of STIM1 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
KEA Substrates of Kinases | kinases that phosphorylate STIM1 protein from the curated KEA Substrates of Kinases dataset. | |
Kinase Library Serine Threonine Kinome Atlas | kinases that phosphorylate STIM1 protein from the Kinase Library Serine Threonine Atlas dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of STIM1 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of STIM1 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with STIM1 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
KnockTF Gene Expression Profiles with Transcription Factor Perturbations | transcription factor perturbations changing expression of STIM1 gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of STIM1 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LOCATE Curated Protein Localization Annotations | cellular components containing STIM1 protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain STIM1 protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by STIM1 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
MiRTarBase microRNA Targets | microRNAs targeting STIM1 gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of STIM1 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
MPO Gene-Phenotype Associations | phenotypes of transgenic mice caused by STIM1 gene mutations from the MPO Gene-Phenotype Associations dataset. | |
MSigDB Cancer Gene Co-expression Modules | co-expressed genes for STIM1 from the MSigDB Cancer Gene Co-expression Modules dataset. | |
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations | gene perturbations changing expression of STIM1 gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of STIM1 gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
NURSA Protein Complexes | protein complexs containing STIM1 protein recovered by IP-MS from the NURSA Protein Complexes dataset. | |
OMIM Gene-Disease Associations | phenotypes associated with STIM1 gene from the curated OMIM Gene-Disease Associations dataset. | |
Pathway Commons Protein-Protein Interactions | interacting proteins for STIM1 from the Pathway Commons Protein-Protein Interactions dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of STIM1 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of STIM1 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PFOCR Pathway Figure Associations 2023 | pathways involving STIM1 protein from the PFOCR Pathway Figure Associations 2023 dataset. | |
PFOCR Pathway Figure Associations 2024 | pathways involving STIM1 protein from the Wikipathways PFOCR 2024 dataset. | |
Phosphosite Textmining Biological Term Annotations | biological terms co-occuring with STIM1 protein in abstracts of publications describing phosphosites from the Phosphosite Textmining Biological Term Annotations dataset. | |
PhosphoSitePlus Substrates of Kinases | kinases that phosphorylate STIM1 protein from the curated PhosphoSitePlus Substrates of Kinases dataset. | |
PID Pathways | pathways involving STIM1 protein from the PID Pathways dataset. | |
ProteomicsDB Cell Type and Tissue Protein Expression Profiles | cell types and tissues with high or low expression of STIM1 protein relative to other cell types and tissues from the ProteomicsDB Cell Type and Tissue Protein Expression Profiles dataset. | |
Reactome Pathways 2014 | pathways involving STIM1 protein from the Reactome Pathways dataset. | |
Reactome Pathways 2024 | pathways involving STIM1 protein from the Reactome Pathways 2024 dataset. | |
Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of STIM1 gene from the Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures dataset. | |
Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of STIM1 gene from the Replogle et al., Cell, 2022 K562 Genome-wide Perturb-seq Gene Perturbation Signatures dataset. | |
Replogle et al., Cell, 2022 RPE1 Essential Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of STIM1 gene from the Replogle et al., Cell, 2022 RPE1 Essential Perturb-seq Gene Perturbation Signatures dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of STIM1 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at STIM1 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of STIM1 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of STIM1 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Sanger Dependency Map Cancer Cell Line Proteomics | cell lines associated with STIM1 protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset. | |
SILAC Phosphoproteomics Signatures of Differentially Phosphorylated Proteins for Drugs | drug perturbations changing phosphorylation of STIM1 protein from the SILAC Phosphoproteomics Signatures of Differentially Phosphorylated Proteins for Drugs dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of STIM1 gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of STIM1 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of STIM1 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of STIM1 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of STIM1 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores | tissues with high expression of STIM1 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of STIM1 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores | tissues co-occuring with STIM1 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with STIM1 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |
WikiPathways Pathways 2024 | pathways involving STIM1 protein from the WikiPathways Pathways 2024 dataset. | |