Name | TBC/LysM-associated domain containing 2 |
Description | Predicted to be involved in response to oxidative stress. Predicted to act upstream of or within negative regulation of cellular response to oxidative stress. Predicted to be active in nucleus. [provided by Alliance of Genome Resources, Mar 2025] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nFibroblast activation protein (FAP) has emerged as a key mediator of the remodeling processes within pathological tissues. In the context of cancer, FAP drives the conversion of quiescent fibroblasts into cancer‐associated fibroblasts (CAFs) that exhibit a distinct inflammatory, immune‐suppressive phenotype. Its activity via a uPAR-dependent signaling cascade results in the secretion of chemokines such as CCL2 that recruit myeloid-derived suppressor cells, thereby reinforcing a tumor-supportive microenvironment and enhancing tumor growth and invasion. Moreover, FAP’s enzymatic activity is essential for modifying extracellular matrix constituents, promoting matrix degradation and facilitating invasion as demonstrated by gain- and loss-of-function studies in various xenograft models."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "12"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nBeyond its oncologic contributions, FAP plays pivotal roles in non-malignant conditions. Its regulated proteolytic functions participate in ordered collagen processing and extracellular matrix remodeling, processes fundamental to tissue repair and fibrosis resolution—for example, in pulmonary fibrosis, myocardial scar formation, and bone remodeling. Additionally, FAP-mediated cleavage of metabolic modulators such as FGF-21 demonstrates its influence on systemic metabolism, while novel radiotracers and imaging agents targeting FAP facilitate non-invasive visualization of activated fibroblasts in settings such as myocardial infarction and rheumatoid arthritis. Collectively, these findings highlight FAP as a multifunctional mediator not only of stromal reprogramming in cancer but also of fibrotic, metabolic, and regenerative processes."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "13", "end_ref": "24"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIn addition, FAP is critically involved in cardiovascular and metabolic homeostasis. Its expression in activated cardiac fibroblasts affects infarct healing and ventricular remodeling, while in adipose tissue and atherosclerotic plaques FAP modulates inflammatory cell recruitment and matrix composition, thereby influencing obesity-related metabolic dysfunction and atherosclerosis development. Notably, immunotherapeutic strategies aimed at targeting FAP—ranging from vaccines to chimeric antigen receptor (CAR)-T cells—have shown promise in preclinical models by reducing tumor growth and reversing pathological fibrosis. Such diverse roles across disease states underscore the clinical potential of FAP as both a diagnostic biomarker and a therapeutic target."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "25", "end_ref": "36"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Xuguang Yang, Yuli Lin, Yinghong Shi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Res (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/0008-5472.CAN-15-2973"}], "href": "https://doi.org/10.1158/0008-5472.CAN-15-2973"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27216177"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27216177"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Angélica M Santos, Jason Jung, Nazneen Aziz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI38988"}], "href": "https://doi.org/10.1172/JCI38988"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19920354"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19920354"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Edward W Roberts, Andrew Deonarine, James O Jones, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20122344"}], "href": "https://doi.org/10.1084/jem.20122344"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23712428"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23712428"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Hyung-Ok Lee, Stefanie R Mullins, Janusz Franco-Barraza, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "BMC Cancer (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/1471-2407-11-245"}], "href": "https://doi.org/10.1186/1471-2407-11-245"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21668992"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21668992"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Yuan Wen, Chun-Ting Wang, Tian-Tai Ma, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cancer Sci (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/j.1349-7006.2010.01695.x"}], "href": "https://doi.org/10.1111/j.1349-7006.2010.01695.x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20804499"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20804499"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Jonathan D Cheng, Matthildi Valianou, Adrian A Canutescu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cancer Ther (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1158/1535-7163.MCT-04-0269"}], "href": "https://doi.org/10.1158/1535-7163.MCT-04-0269"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15767544"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15767544"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Yan Huang, Avis E Simms, Anna Mazur, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Clin Exp Metastasis (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10585-011-9392-x"}], "href": "https://doi.org/10.1007/s10585-011-9392-x"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21604185"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21604185"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Lingling Chen, Xiangting Qiu, Xinhua Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2017.03.039"}], "href": "https://doi.org/10.1016/j.bbrc.2017.03.039"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28302482"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28302482"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Ming-Hui Fan, Qiang Zhu, Hui-Hua Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M115.701433"}], "href": "https://doi.org/10.1074/jbc.M115.701433"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26663085"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26663085"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Andrew L Coppage, Kathryn R Heard, Matthew T DiMare, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Human FGF-21 Is a Substrate of Fibroblast Activation Protein."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0151269"}], "href": "https://doi.org/10.1371/journal.pone.0151269"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26962859"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26962859"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Guan-Min Jiang, Wan-Ying Xie, Hong-Sheng Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.4577"}], "href": "https://doi.org/10.18632/oncotarget.4577"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26305550"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26305550"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Hui Emma Zhang, Elizabeth J Hamson, Maria Magdalena Koczorowska, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Identification of Novel Natural Substrates of Fibroblast Activation Protein-alpha by Differential Degradomics and Proteomics."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Proteomics (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/mcp.RA118.001046"}], "href": "https://doi.org/10.1074/mcp.RA118.001046"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30257879"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30257879"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Alice E Denton, Edward J Carr, Lukasz P Magiera, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Embryonic FAP"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "+"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": " lymphoid tissue organizer cells generate the reticular network of adult lymph nodes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20181705"}], "href": "https://doi.org/10.1084/jem.20181705"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31324739"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31324739"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Alanna Kennedy, Huan Dong, Donghai Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Int J Cancer (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/ijc.23871"}], "href": "https://doi.org/10.1002/ijc.23871"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18823010"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18823010"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Ming Qi, Shuran Fan, Maohua Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI157399"}], "href": "https://doi.org/10.1172/JCI157399"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35951441"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35951441"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Claudia Sorrentino, Lucio Miele, Amalia Porta, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Oncotarget (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.18632/oncotarget.11729"}], "href": "https://doi.org/10.18632/oncotarget.11729"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27590504"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27590504"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Yifan Liu, Yansha Sun, Peng Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Transl Med (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1186/s12967-023-04080-z"}], "href": "https://doi.org/10.1186/s12967-023-04080-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37046312"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37046312"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Hanjing Wei, Yanhua Xu, Yibin Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Identification of Fibroblast Activation Protein as an Osteogenic Suppressor and Anti-osteoporosis Drug Target."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Rep (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.celrep.2020.108252"}], "href": "https://doi.org/10.1016/j.celrep.2020.108252"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33053358"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33053358"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Sokrates Stein, Julien Weber, Stefanie Nusser-Stein, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Deletion of fibroblast activation protein provides atheroprotection."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cardiovasc Res (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/cvr/cvaa142"}], "href": "https://doi.org/10.1093/cvr/cvaa142"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32402085"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32402085"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Qiu Xia, Fang-Fang Zhang, Fei Geng, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Improvement of anti-tumor immunity of fibroblast activation protein α based vaccines by combination with cyclophosphamide in a murine model of breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Immunol (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cellimm.2016.08.006"}], "href": "https://doi.org/10.1016/j.cellimm.2016.08.006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27545090"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27545090"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Qiu Xia, Fei Geng, Fang-Fang Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunopharmacol Immunotoxicol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/08923973.2016.1269337"}], "href": "https://doi.org/10.1080/08923973.2016.1269337"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28004985"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28004985"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Laura B N Langer, Annika Hess, Zekiye Korkmaz, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Molecular imaging of fibroblast activation protein after myocardial infarction using the novel radiotracer ["}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "68"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": "Ga]MHLL1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Theranostics (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.7150/thno.51419"}], "href": "https://doi.org/10.7150/thno.51419"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "34335962"}], "href": "https://pubmed.ncbi.nlm.nih.gov/34335962"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Tessa van der Geest, Debbie M Roeleveld, Birgitte Walgreen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Imaging fibroblast activation protein to monitor therapeutic effects of neutralizing interleukin-22 in collagen-induced arthritis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Rheumatology (Oxford) (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/rheumatology/kex456"}], "href": "https://doi.org/10.1093/rheumatology/kex456"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29361119"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29361119"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Diana Trujillo-Benítez, Myrna Luna-Gutiérrez, Guillermina Ferro-Flores, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Design, Synthesis and Preclinical Assessment of "}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "99m"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": "Tc-iFAP for In Vivo Fibroblast Activation Protein (FAP) Imaging."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Molecules (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3390/molecules27010264"}], "href": "https://doi.org/10.3390/molecules27010264"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35011496"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35011496"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Yuxi Sun, Mengqiu Ma, Dandan Cao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Inhibition of Fap Promotes Cardiac Repair by Stabilizing BNP."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCRESAHA.122.320781"}], "href": "https://doi.org/10.1161/CIRCRESAHA.122.320781"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "36756875"}], "href": "https://pubmed.ncbi.nlm.nih.gov/36756875"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Yanmei Yi, Zhaotong Wang, Yanqin Sun, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The EMT-related transcription factor snail up-regulates FAPα in malignant melanoma cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Exp Cell Res (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.yexcr.2018.01.039"}], "href": "https://doi.org/10.1016/j.yexcr.2018.01.039"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29410133"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29410133"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Rachel Blomberg, Daniel P Beiting, Martin Wabitsch, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast activation protein restrains adipogenic differentiation and regulates matrix-mediated mTOR signaling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Matrix Biol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.matbio.2019.07.007"}], "href": "https://doi.org/10.1016/j.matbio.2019.07.007"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31325484"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31325484"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Daniel B Hoffmann, Daniela Fraccarollo, Paolo Galuppo, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Genetic ablation of fibroblast activation protein alpha attenuates left ventricular dilation after myocardial infarction."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0248196"}], "href": "https://doi.org/10.1371/journal.pone.0248196"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33667270"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33667270"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Li Wenlong, Yang Leilei, Fan Wei, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Luciferase expression is driven by the promoter of fibroblast activation protein-α in murine pulmonary fibrosis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biotechnol Lett (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s10529-015-1855-8"}], "href": "https://doi.org/10.1007/s10529-015-1855-8"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25994578"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25994578"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Sioh-Yang Tan, Sumaiya Chowdhury, Natasa Polak, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast activation protein is dispensable in the anti-influenza immune response in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0171194"}], "href": "https://doi.org/10.1371/journal.pone.0171194"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28158223"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28158223"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "James Monslow, Leslie Todd, John E Chojnowski, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fibroblast Activation Protein Regulates Lesion Burden and the Fibroinflammatory Response in Apoe-Deficient Mice in a Sexually Dimorphic Manner."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Pathol (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ajpath.2020.01.004"}], "href": "https://doi.org/10.1016/j.ajpath.2020.01.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32084369"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32084369"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Yunyun Wu, Chao Wu, Tiancong Shi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.2303075120"}], "href": "https://doi.org/10.1073/pnas.2303075120"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "38100414"}], "href": "https://pubmed.ncbi.nlm.nih.gov/38100414"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Jiahao He, Bin Fang, Shengzhou Shan, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mechanical stiffness promotes skin fibrosis through FAPα-AKT signaling pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Dermatol Sci (2024)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.jdermsci.2023.12.004"}], "href": "https://doi.org/10.1016/j.jdermsci.2023.12.004"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "38155020"}], "href": "https://pubmed.ncbi.nlm.nih.gov/38155020"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Yang Gao, Xue Peng, Zhan-Fen Jin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "[Expression of FAP and alpha-SMA during the incised wound healing in mice skin]."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Fa Yi Xue Za Zhi (2009)"}]}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20225612"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20225612"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Zaiting Ye, Jiongwei Pan, Zhangyong Yin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Dendritic cells infected with recombinant adenoviral vector encoding mouse fibroblast activation protein-α and human livin α exert an antitumor effect against Lewis lung carcinoma in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immun Inflamm Dis (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/iid3.1011"}], "href": "https://doi.org/10.1002/iid3.1011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37773704"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37773704"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Meihua Chen, Ling Xiao, Hongyuan Jia, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Stereotactic ablative radiotherapy and FAPα-based cancer vaccine suppresses metastatic tumor growth in 4T1 mouse breast cancer."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Radiother Oncol (2023)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.radonc.2023.109946"}], "href": "https://doi.org/10.1016/j.radonc.2023.109946"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "37806560"}], "href": "https://pubmed.ncbi.nlm.nih.gov/37806560"}]}]}]}
|
Synonyms | C20ORF118 |
Proteins | TLDC2_HUMAN |
NCBI Gene ID | 140711 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
TLDC2 has 2,057 functional associations with biological entities spanning 7 categories (molecular profile, functional term, phrase or reference, chemical, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA) extracted from 57 datasets.
Click the + buttons to view associations for TLDC2 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of TLDC2 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of TLDC2 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of TLDC2 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with TLDC2 gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of TLDC2 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of TLDC2 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of TLDC2 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with TLDC2 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of TLDC2 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with TLDC2 gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with TLDC2 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by TLDC2 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with TLDC2 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at TLDC2 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of TLDC2 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of TLDC2 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of TLDC2 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of TLDC2 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of TLDC2 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GO Cellular Component Annotations 2023 | cellular components containing TLDC2 protein from the curated GO Cellular Component Annotations 2023 dataset. | |
GO Cellular Component Annotations 2025 | cellular components containing TLDC2 protein from the curated GO Cellular Component Annotations 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of TLDC2 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of TLDC2 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of TLDC2 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of TLDC2 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of TLDC2 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
HuBMAP ASCT+B Annotations | cell types associated with TLDC2 gene from the HuBMAP ASCT+B dataset. | |
HuBMAP ASCT+B Augmented with RNA-seq Coexpression | cell types associated with TLDC2 gene from the HuBMAP ASCT+B Augmented with RNA-seq Coexpression dataset. | |
IMPC Knockout Mouse Phenotypes | phenotypes of mice caused by TLDC2 gene knockout from the IMPC Knockout Mouse Phenotypes dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for TLDC2 protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of TLDC2 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of TLDC2 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of TLDC2 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain TLDC2 protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MGI Mouse Phenotype Associations 2023 | phenotypes of transgenic mice caused by TLDC2 gene mutations from the MGI Mouse Phenotype Associations 2023 dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of TLDC2 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations | gene perturbations changing expression of TLDC2 gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset. | |
NURSA Protein Complexes | protein complexs containing TLDC2 protein recovered by IP-MS from the NURSA Protein Complexes dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of TLDC2 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of TLDC2 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles | cell types and tissues with high or low DNA methylation of TLDC2 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of TLDC2 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at TLDC2 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of TLDC2 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of TLDC2 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of TLDC2 gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of TLDC2 gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of TLDC2 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of TLDC2 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TLDC2 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TLDC2 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with TLDC2 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |