| Name | transmembrane protein 35A |
| Description | Enables acetylcholine receptor regulator activity. Involved in chaperone-mediated protein complex assembly and positive regulation of protein localization to cell surface. Located in endoplasmic reticulum. [provided by Alliance of Genome Resources, Mar 2025] |
| Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nAlthough none of the provided abstracts explicitly mention TMEM35A, a common picture emerges from these studies regarding transcription‐regulatory proteins (notably TEF/TEAD family members) that serve as key effectors of the Hippo pathway and other signal transduction cascades. Collectively, these reports describe how TEF/TEAD factors and their binding partners (e.g., YAP, TAZ, and Vgl/VITO proteins) are essential for directing diverse cellular programs such as cell proliferation, differentiation, survival, and metabolic control in tissues including cardiac and skeletal muscle, vascular smooth muscle, neural and glial lineages, and even in fibroblasts during tissue remodeling. For instance, several studies demonstrate that TEAD1 cooperates with co‐activators like YAP/TAZ to modulate gene expression programs that govern cardiomyocyte cell cycle progression and mitochondrial function, while others identify similar roles in regulating muscle‐specific gene expression and myogenic differentiation."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "15"}]}, {"type": "t", "text": "\n"}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nThese integrated findings imply that, by analogy, TMEM35A—if functionally linked to similar transcription‐regulatory networks—might act as a modulatory protein that influences gene expression programs governing energy metabolism, cell cycle control, and tissue remodeling. For example, insights into TEAD1’s roles in mediating mitochondrial oxidative phosphorylation, regulating cardiac hypertrophy and fibrosis, and even influencing cellular senescence"}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "16", "end_ref": "26"}, {"type": "fg_f", "ref": "21"}]}, {"type": "t", "text": "—offer a conceptual framework for exploring TMEM35A’s potential biological roles. Future investigations will need to determine whether TMEM35A directly interacts with these pathways or serves an ancillary function that fine‐tunes transcriptional responses elicited by TEAD/TEF complexes.\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "J H Xiao, I Davidson, H Matthes, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (1991)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/0092-8674(91)90088-g"}], "href": "https://doi.org/10.1016/0092-8674(91"}, {"type": "t", "text": "90088-g) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "1851669"}], "href": "https://pubmed.ncbi.nlm.nih.gov/1851669"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Jing Geng, Shujuan Yu, Hao Zhao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The transcriptional coactivator TAZ regulates reciprocal differentiation of T"}, {"type": "a", "children": [{"type": "t", "text": "sub"}], "href": "sub"}, {"type": "t", "text": "H"}, {"type": "a", "children": [{"type": "t", "text": "/sub"}], "href": "/sub"}, {"type": "t", "text": "17 cells and T"}, {"type": "a", "children": [{"type": "t", "text": "sub"}], "href": "sub"}, {"type": "t", "text": "reg"}, {"type": "a", "children": [{"type": "t", "text": "/sub"}], "href": "/sub"}, {"type": "t", "text": " cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Immunol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ni.3748"}], "href": "https://doi.org/10.1038/ni.3748"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28504697"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28504697"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Atsushi Sawada, Hiroshi Kiyonari, Kanako Ukita, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.01759-07"}], "href": "https://doi.org/10.1128/MCB.01759-07"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18332127"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18332127"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Zhiqiang Lin, Haidong Guo, Yuan Cao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Acetylation of VGLL4 Regulates Hippo-YAP Signaling and Postnatal Cardiac Growth."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Dev Cell (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.devcel.2016.09.005"}], "href": "https://doi.org/10.1016/j.devcel.2016.09.005"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27720608"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27720608"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Michinori Kitagawa "}, {"type": "b", "children": [{"type": "t", "text": "A Sveinsson's chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2007.07.129"}], "href": "https://doi.org/10.1016/j.bbrc.2007.07.129"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17689488"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17689488"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Qiong Gan, Tadashi Yoshida, Jian Li, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCRESAHA.107.154831"}], "href": "https://doi.org/10.1161/CIRCRESAHA.107.154831"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17823374"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17823374"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Tadanori Shimomura, Norio Miyamura, Shoji Hata, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem Biophys Res Commun (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bbrc.2013.12.100"}], "href": "https://doi.org/10.1016/j.bbrc.2013.12.100"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24380865"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24380865"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Islam Osman, Xiangqin He, Jinhua Liu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circ Res (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCRESAHA.118.314187"}], "href": "https://doi.org/10.1161/CIRCRESAHA.118.314187"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30801233"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30801233"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Hsiao-Huei Chen, Tomoji Maeda, Steven J Mullett, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Transcription cofactor Vgl-2 is required for skeletal muscle differentiation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Genesis (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/gene.20055"}], "href": "https://doi.org/10.1002/gene.20055"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15287000"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15287000"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Hiroshi Mamada, Takashi Sato, Mitsunori Ota, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.163675"}], "href": "https://doi.org/10.1242/jcs.163675"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25588835"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25588835"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Richard W Tsika, Christine Schramm, Gretchen Simmer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M807461200"}], "href": "https://doi.org/10.1074/jbc.M807461200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18978355"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18978355"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Leslie E Carlini, Michael J Getz, Arthur R Strauch, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109754200"}], "href": "https://doi.org/10.1074/jbc.M109754200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11751932"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11751932"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Camila Lopez-Anido, Yannick Poitelon, Chetna Gopinath, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddw158"}], "href": "https://doi.org/10.1093/hmg/ddw158"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27288457"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27288457"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Natalia Karasseva, Gretchen Tsika, Juan Ji, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.23.15.5143-5164.2003"}], "href": "https://doi.org/10.1128/MCB.23.15.5143-5164.2003"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12861002"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12861002"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Danyil Huraskin, Nane Eiber, Martin Reichel, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Development (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/dev.139907"}], "href": "https://doi.org/10.1242/dev.139907"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27578179"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27578179"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Richard W Tsika, Lixin Ma, Izhak Kehat, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M109.063057"}], "href": "https://doi.org/10.1074/jbc.M109.063057"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20194497"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20194497"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Ruya Liu, Jeongkyung Lee, Byung S Kim, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "JCI Insight (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/jci.insight.93343"}], "href": "https://doi.org/10.1172/jci.insight.93343"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28878117"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28878117"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Annaïg Hamon, Christel Masson, Juliette Bitard, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Invest Ophthalmol Vis Sci (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1167/iovs.16-21366"}], "href": "https://doi.org/10.1167/iovs.16-21366"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28384715"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28384715"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Concetta Ambrosino, Tomoko Iwata, Claudio Scafoglio, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TEF-1 and C/EBPbeta are major p38alpha MAPK-regulated transcription factors in proliferating cardiomyocytes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Biochem J (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1042/BJ20051502"}], "href": "https://doi.org/10.1042/BJ20051502"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16492136"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16492136"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Jinhua Liu, Tong Wen, Kunzhe Dong, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41418-020-00732-5"}], "href": "https://doi.org/10.1038/s41418-020-00732-5"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33469230"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33469230"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Yuting Wang, Liping Liu, Yifan Song, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Protein Cell (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1007/s13238-021-00894-z"}], "href": "https://doi.org/10.1007/s13238-021-00894-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35023014"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35023014"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Tong Wen, Qin Yin, Luyi Yu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Characterization of mice carrying a conditional TEAD1 allele."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Genesis (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1002/dvg.23085"}], "href": "https://doi.org/10.1002/dvg.23085"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29193599"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29193599"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Joaquin Tosi, Kerstin M Janisch, Nan-Kai Wang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cellular and molecular origin of circumpapillary dysgenesis of the pigment epithelium."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Ophthalmology (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ophtha.2008.10.032"}], "href": "https://doi.org/10.1016/j.ophtha.2008.10.032"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19410955"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19410955"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Masazumi Nishimoto, Kousuke Uranishi, Masamitsu N Asaka, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Transformation of normal cells by aberrant activation of YAP via cMyc with TEAD."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41598-019-47301-6"}], "href": "https://doi.org/10.1038/s41598-019-47301-6"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31358774"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31358774"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Shuai Song, Xiaokai Zhang, Zihang Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Signal Transduct Target Ther (2024)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41392-023-01732-w"}], "href": "https://doi.org/10.1038/s41392-023-01732-w"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "38374140"}], "href": "https://pubmed.ncbi.nlm.nih.gov/38374140"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Yuki Niki, Yukiho Kobayashi, Keiji Moriyama "}, {"type": "b", "children": [{"type": "t", "text": "Expression pattern of transcriptional enhanced associate domain family member 1 (Tead1) in developing mouse molar tooth."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Gene Expr Patterns (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.gep.2021.119182"}], "href": "https://doi.org/10.1016/j.gep.2021.119182"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33984529"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33984529"}]}]}]}
|
| NCBI Gene ID | 59353 |
| API | |
| Download Associations | |
| Predicted Functions |
![]() |
| Co-expressed Genes |
![]() |
| Expression in Tissues and Cell Lines |
![]() |
TMEM35A has 1,137 functional associations with biological entities spanning 5 categories (functional term, phrase or reference, disease, phenotype or trait, chemical, cell line, cell type or tissue, gene, protein or microRNA) extracted from 18 datasets.
Click the + buttons to view associations for TMEM35A from the datasets below.
If available, associations are ranked by standardized value
| Dataset | Summary | |
|---|---|---|
| Allen Brain Atlas Aging Dementia and Traumatic Brain Injury Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of TMEM35A gene relative to other tissue samples from the Allen Brain Atlas Aging Dementia and Traumatic Brain Injury Tissue Sample Gene Expression Profiles dataset. | |
| CellMarker Gene-Cell Type Associations | cell types associated with TMEM35A gene from the CellMarker Gene-Cell Type Associations dataset. | |
| COMPARTMENTS Curated Protein Localization Evidence Scores 2025 | cellular components containing TMEM35A protein from the COMPARTMENTS Curated Protein Localization Evidence Scores 2025 dataset. | |
| COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with TMEM35A protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
| DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with TMEM35A gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
| GO Biological Process Annotations 2025 | biological processes involving TMEM35A gene from the curated GO Biological Process Annotations2025 dataset. | |
| GO Molecular Function Annotations 2025 | molecular functions performed by TMEM35A gene from the curated GO Molecular Function Annotations 2025 dataset. | |
| GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of TMEM35A gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
| GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of TMEM35A gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
| JASPAR Predicted Human Transcription Factor Targets 2025 | transcription factors regulating expression of TMEM35A gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Human Transcription Factor Targets dataset. | |
| JASPAR Predicted Mouse Transcription Factor Targets 2025 | transcription factors regulating expression of TMEM35A gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Mouse Transcription Factor Targets 2025 dataset. | |
| LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of TMEM35A gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
| MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of TMEM35A gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
| RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of TMEM35A gene from the RummaGEO Drug Perturbation Signatures dataset. | |
| RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of TMEM35A gene from the RummaGEO Gene Perturbation Signatures dataset. | |
| TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TMEM35A protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
| TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TMEM35A protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
| TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with TMEM35A protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |