HGNC Family | Tetratricopeptide repeat domain containing (TTC) |
Name | tetratricopeptide repeat domain 38 |
Description | Located in extracellular exosome. [provided by Alliance of Genome Resources, Mar 2025] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nThe extensive body of literature provided here examines the molecular and cellular mechanisms underlying polycystic kidney disease. These studies detail how proteins such as polycystin‐1 and polycystin‐2 localize to primary cilia, engage in proteolytic processing and trafficking, and regulate diverse signaling pathways—including JAK‐STAT, mTOR, Wnt, and calcium‐dependent cascades—that control cell proliferation, differentiation, and tissue morphogenesis in renal and extra‐renal tissues."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "10"}]}, {"type": "t", "text": " These works collectively emphasize the importance of coordinated ciliary function and protein complex assembly in maintaining normal renal architecture and in the pathogenesis of cyst formation."}]}, {"type": "t", "text": "\n\n"}, {"type": "p", "children": [{"type": "t", "text": "\nIt is important to note, however, that none of these abstracts provide any experimental evidence or discussion regarding TTC38. Although TTC38 (likely referring to a protein harboring tetratricopeptide repeat motifs that in other contexts can mediate protein–protein interactions) might be hypothesized to influence aspects of complex assembly or signaling regulation, its function is not addressed in the literature cited here. In other words, while the studies offer rich insights into the regulatory networks of polycystins and associated pathways in polycystic kidney disease"}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "11", "end_ref": "39"}]}, {"type": "t", "text": ", they offer no data from which to infer a role for TTC38. Future studies will be needed to clarify whether TTC38 participates directly or indirectly in these complex cellular networks."}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "W Lu, X Shen, A Pavlova, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2001)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/10.21.2385"}], "href": "https://doi.org/10.1093/hmg/10.21.2385"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11689485"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11689485"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Stephen C Parnell, Brenda S Magenheimer, Robin L Maser, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M201875200"}], "href": "https://doi.org/10.1074/jbc.M201875200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "11912216"}], "href": "https://pubmed.ncbi.nlm.nih.gov/11912216"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Anil Kumar Bhunia, Klaus Piontek, Alessandra Boletta, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/s0092-8674(02)00716-x"}], "href": "https://doi.org/10.1016/s0092-8674(02"}, {"type": "t", "text": "00716-x) PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12007403"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12007403"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Bradley K Yoder, Xiaoying Hou, Lisa M Guay-Woodford "}, {"type": "b", "children": [{"type": "t", "text": "The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2002)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1097/01.asn.0000029587.47950.25"}], "href": "https://doi.org/10.1097/01.asn.0000029587.47950.25"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12239239"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12239239"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Andrew J Streets, Linda J Newby, Michael J O'Hare, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1097/01.asn.0000076075.49819.9b"}], "href": "https://doi.org/10.1097/01.asn.0000076075.49819.9b"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12819240"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12819240"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "David H Grimm, Yiqiang Cai, Veronique Chauvet, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 distribution is modulated by polycystin-2 expression in mammalian cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M306536200"}], "href": "https://doi.org/10.1074/jbc.M306536200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12840011"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12840011"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Veronique Chauvet, Xin Tian, Herve Husson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2004)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI21753"}], "href": "https://doi.org/10.1172/JCI21753"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15545994"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15545994"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Saori Nishio, Masahiko Hatano, Michio Nagata, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2005)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI22850"}], "href": "https://doi.org/10.1172/JCI22850"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "15761494"}], "href": "https://pubmed.ncbi.nlm.nih.gov/15761494"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Caroline Thivierge, Almira Kurbegovic, Martin Couillard, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Overexpression of PKD1 causes polycystic kidney disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.26.4.1538-1548.2006"}], "href": "https://doi.org/10.1128/MCB.26.4.1538-1548.2006"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16449663"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16449663"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Zhousheng Xiao, Shiqin Zhang, Josh Mahlios, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2006)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.M604772200"}], "href": "https://doi.org/10.1074/jbc.M604772200"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "16905538"}], "href": "https://pubmed.ncbi.nlm.nih.gov/16905538"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Ali K Ahrabi, Sara Terryn, Giovanna Valenti, et al. "}, {"type": "b", "children": [{"type": "t", "text": "PKD1 haploinsufficiency causes a syndrome of inappropriate antidiuresis in mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2006010052"}], "href": "https://doi.org/10.1681/ASN.2006010052"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17475819"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17475819"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Sabrine Hassane, Nanna Claij, Irma S Lantinga-van Leeuwen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Arterioscler Thromb Vasc Biol (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/ATVBAHA.107.149252"}], "href": "https://doi.org/10.1161/ATVBAHA.107.149252"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17656674"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17656674"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Irma S Lantinga-van Leeuwen, Wouter N Leonhard, Annemieke van der Wal, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddm299"}], "href": "https://doi.org/10.1093/hmg/ddm299"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17932118"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17932118"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Klaus Piontek, Luis F Menezes, Miguel A Garcia-Gonzalez, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Med (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nm1675"}], "href": "https://doi.org/10.1038/nm1675"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "17965720"}], "href": "https://pubmed.ncbi.nlm.nih.gov/17965720"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Shengqiang Yu, Karl Hackmann, Jiangang Gao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2007)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0708217104"}], "href": "https://doi.org/10.1073/pnas.0708217104"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18003909"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18003909"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Surya M Nauli, Yoshifumi Kawanabe, John J Kaminski, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circulation (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCULATIONAHA.107.710111"}], "href": "https://doi.org/10.1161/CIRCULATIONAHA.107.710111"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18285569"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18285569"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Jens Fielitz, Mi-Sung Kim, John M Shelton, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Requirement of protein kinase D1 for pathological cardiac remodeling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.0712265105"}], "href": "https://doi.org/10.1073/pnas.0712265105"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18287012"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18287012"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Lorenzo Battini, Salvador Macip, Elena Fedorova, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of polycystin-1 causes centrosome amplification and genomic instability."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddn180"}], "href": "https://doi.org/10.1093/hmg/ddn180"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18566106"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18566106"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "Tiffiney R Hartman, Dongyan Liu, Jack T Zilfou, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddn325"}], "href": "https://doi.org/10.1093/hmg/ddn325"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18845692"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18845692"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Marie C Hogan, Luca Manganelli, John R Woollard, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Characterization of PKD protein-positive exosome-like vesicles."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2008060564"}], "href": "https://doi.org/10.1681/ASN.2008060564"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19158352"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19158352"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Gianfranco Distefano, Manila Boca, Isaline Rowe, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Cell Biol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1128/MCB.01259-08"}], "href": "https://doi.org/10.1128/MCB.01259-08"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19255143"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19255143"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Hester Happé, Wouter N Leonhard, Annemieke van der Wal, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddp190"}], "href": "https://doi.org/10.1093/hmg/ddp190"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19401297"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19401297"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Ana P Bastos, Klaus Piontek, Ana M Silva, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2008040435"}], "href": "https://doi.org/10.1681/ASN.2008040435"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19833899"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19833899"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Reza Sharif-Naeini, Joost H A Folgering, Delphine Bichet, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 and -2 dosage regulates pressure sensing."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2009.08.045"}], "href": "https://doi.org/10.1016/j.cell.2009.08.045"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19879844"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19879844"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Saori Nishio, Xin Tian, Anna Rachel Gallagher, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of oriented cell division does not initiate cyst formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2009060603"}], "href": "https://doi.org/10.1681/ASN.2009060603"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19959710"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19959710"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Jonathan M Shillingford, Klaus B Piontek, Gregory G Germino, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2009040421"}], "href": "https://doi.org/10.1681/ASN.2009040421"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20075061"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20075061"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Sheng Xia, Xiaogang Li, Teri Johnson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Development (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/dev.049437"}], "href": "https://doi.org/10.1242/dev.049437"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20181743"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20181743"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Miguel A Garcia-Gonzalez, Patricia Outeda, Qin Zhou, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pkd1 and Pkd2 are required for normal placental development."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS One (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pone.0012821"}], "href": "https://doi.org/10.1371/journal.pone.0012821"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20862291"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20862291"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Wouter N Leonhard, Annemieke van der Wal, Zlata Novalic, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Am J Physiol Renal Physiol (2011)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1152/ajprenal.00419.2010"}], "href": "https://doi.org/10.1152/ajprenal.00419.2010"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "21345977"}], "href": "https://pubmed.ncbi.nlm.nih.gov/21345977"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Arne Ittner, Helena Block, Christoph A Reichel, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Regulation of PTEN activity by p38δ-PKD1 signaling in neutrophils confers inflammatory responses in the lung."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20120677"}], "href": "https://doi.org/10.1084/jem.20120677"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23129748"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23129748"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Vishal Patel, Sachin Hajarnis, Darren Williams, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNAs regulate renal tubule maturation through modulation of Pkd1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Am Soc Nephrol (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1681/ASN.2012030321"}], "href": "https://doi.org/10.1681/ASN.2012030321"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23138483"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23138483"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Luis F Menezes, Fang Zhou, Andrew D Patterson, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4α as a disease modifier."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "PLoS Genet (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1371/journal.pgen.1003053"}], "href": "https://doi.org/10.1371/journal.pgen.1003053"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23209428"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23209428"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Baptiste Coxam, Amélie Sabine, Neil I Bower, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Pkd1 regulates lymphatic vascular morphogenesis during development."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Rep (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.celrep.2014.03.063"}], "href": "https://doi.org/10.1016/j.celrep.2014.03.063"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24767999"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24767999"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Yiqiang Cai, Sorin V Fedeles, Ke Dong, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Altered trafficking and stability of polycystins underlie polycystic kidney disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI67273"}], "href": "https://doi.org/10.1172/JCI67273"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25365220"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25365220"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Hyunho Kim, Hangxue Xu, Qin Yao, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms6482"}], "href": "https://doi.org/10.1038/ncomms6482"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25405894"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25405894"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Vladimir G Gainullin, Katharina Hopp, Christopher J Ward, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI76972"}], "href": "https://doi.org/10.1172/JCI76972"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25574838"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25574838"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Zully Pedrozo, Alfredo Criollo, Pavan K Battiprolu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Circulation (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1161/CIRCULATIONAHA.114.013537"}], "href": "https://doi.org/10.1161/CIRCULATIONAHA.114.013537"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25888683"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25888683"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Luis F Menezes, Cheng-Chao Lin, Fang Zhou, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EBioMedicine (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.ebiom.2016.01.027"}], "href": "https://doi.org/10.1016/j.ebiom.2016.01.027"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27077126"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27077126"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Ping Zhu, Cynthia J Sieben, Xiaolei Xu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Hum Mol Genet (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1093/hmg/ddw376"}], "href": "https://doi.org/10.1093/hmg/ddw376"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28007903"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28007903"}]}]}]}
|
Synonyms | LL22NC03-5H6.5 |
Proteins | TTC38_HUMAN |
NCBI Gene ID | 55020 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
TTC38 has 4,764 functional associations with biological entities spanning 9 categories (molecular profile, organism, chemical, functional term, phrase or reference, disease, phenotype or trait, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 85 datasets.
Click the + buttons to view associations for TTC38 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of TTC38 gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of TTC38 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by Microarray dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of TTC38 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Cell Line Gene Expression Profiles | cell lines with high or low expression of TTC38 gene relative to other cell lines from the BioGPS Cell Line Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of TTC38 gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of TTC38 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of TTC38 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CCLE Cell Line Proteomics | Cell lines associated with TTC38 protein from the CCLE Cell Line Proteomics dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with TTC38 gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of TTC38 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of TTC38 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of TTC38 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of TTC38 gene from the CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing TTC38 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Experimental Protein Localization Evidence Scores | cellular components containing TTC38 protein in low- or high-throughput protein localization assays from the COMPARTMENTS Experimental Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with TTC38 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of TTC38 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with TTC38 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Chemical Interactions | chemicals interacting with TTC38 gene/protein from the curated CTD Gene-Chemical Interactions dataset. | |
CTD Gene-Disease Associations | diseases associated with TTC38 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
DeepCoverMOA Drug Mechanisms of Action | small molecule perturbations with high or low expression of TTC38 protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by TTC38 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with TTC38 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DisGeNET Gene-Disease Associations | diseases associated with TTC38 gene in GWAS and other genetic association datasets from the DisGeNET Gene-Disease Associations dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at TTC38 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of TTC38 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of TTC38 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing TTC38 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing TTC38 from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of TTC38 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing TTC38 protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GTEx eQTL 2025 | SNPs regulating expression of TTC38 gene from the GTEx eQTL 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of TTC38 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of TTC38 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
GWASdb SNP-Disease Associations | diseases associated with TTC38 gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset. | |
GWASdb SNP-Phenotype Associations | phenotypes associated with TTC38 gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of TTC38 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of TTC38 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of TTC38 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
HPM Cell Type and Tissue Protein Expression Profiles | cell types and tissues with high or low expression of TTC38 protein relative to other cell types and tissues from the HPM Cell Type and Tissue Protein Expression Profiles dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for TTC38 protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of TTC38 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of TTC38 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of TTC38 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with TTC38 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
KnockTF Gene Expression Profiles with Transcription Factor Perturbations | transcription factor perturbations changing expression of TTC38 gene from the KnockTF Gene Expression Profiles with Transcription Factor Perturbations dataset. | |
LINCS L1000 CMAP Chemical Perturbation Consensus Signatures | small molecule perturbations changing expression of TTC38 gene from the LINCS L1000 CMAP Chemical Perturbations Consensus Signatures dataset. | |
LINCS L1000 CMAP CRISPR Knockout Consensus Signatures | gene perturbations changing expression of TTC38 gene from the LINCS L1000 CMAP CRISPR Knockout Consensus Signatures dataset. | |
LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of TTC38 gene from the LINCS L1000 CMAP Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
MiRTarBase microRNA Targets | microRNAs targeting TTC38 gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of TTC38 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
MoTrPAC Rat Endurance Exercise Training | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the MoTrPAC Rat Endurance Exercise Training dataset. | |
MSigDB Cancer Gene Co-expression Modules | co-expressed genes for TTC38 from the MSigDB Cancer Gene Co-expression Modules dataset. | |
MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations | gene perturbations changing expression of TTC38 gene from the MSigDB Signatures of Differentially Expressed Genes for Cancer Gene Perturbations dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of TTC38 gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
NURSA Protein Complexes | protein complexs containing TTC38 protein recovered by IP-MS from the NURSA Protein Complexes dataset. | |
Pathway Commons Protein-Protein Interactions | interacting proteins for TTC38 from the Pathway Commons Protein-Protein Interactions dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of TTC38 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of TTC38 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures | gene perturbations changing expression of TTC38 gene from the Replogle et al., Cell, 2022 K562 Essential Perturb-seq Gene Perturbation Signatures dataset. | |
Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles | cell types and tissues with high or low DNA methylation of TTC38 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue DNA Methylation Profiles dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of TTC38 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at TTC38 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of TTC38 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of TTC38 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Sanger Dependency Map Cancer Cell Line Proteomics | cell lines associated with TTC38 protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset. | |
Tabula Sapiens Gene-Cell Associations | cell types with high or low expression of TTC38 gene relative to other cell types from the Tabula Sapiens Gene-Cell Associations dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of TTC38 gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of TTC38 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of TTC38 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of TTC38 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TTC38 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores | tissues with high expression of TTC38 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of TTC38 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with TTC38 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |