HGNC Family | SANT/Myb domain containing, Zinc fingers |
Name | zinc finger with KRAB and SCAN domains 2 |
Description | Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Predicted to be involved in regulation of transcription by RNA polymerase II. Predicted to be located in nucleus. [provided by Alliance of Genome Resources, Mar 2025] |
Summary |
{"type": "root", "children": [{"type": "p", "children": [{"type": "t", "text": "\nThe collected studies provide an extensive analysis of the role of autophagy‐related proteins—most notably ATG16L1—and its associated complexes in maintaining cellular homeostasis, modulating inflammatory responses, and protecting against infections and tissue injury. These abstracts detail how ATG16L1 participates in autophagosome formation (via conjugation with ATG5–ATG12 and LC3 lipidation), regulates cytokine production, and influences innate and adaptive immune processes in contexts ranging from Crohn’s disease to graft‐versus‐host disease and microbial infections. Despite the breadth of mechanistic insights into autophagy and immune regulation in these documents, none provide any information regarding the function of ZKSCAN2. In other words, while the literature offers detailed portrayals of ATG16L1‐dependent pathways and their disease implications, it does not address or implicate ZKSCAN2 in any of these processes. Thus, at present, no conclusions about ZKSCAN2’s function can be drawn from the provided set of abstracts."}, {"type": "fg", "children": [{"type": "fg_fs", "start_ref": "1", "end_ref": "44"}]}, {"type": "t", "text": "\n"}]}, {"type": "rg", "children": [{"type": "r", "ref": 1, "children": [{"type": "t", "text": "Noboru Mizushima, Akiko Kuma, Yoshinori Kobayashi, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Sci (2003)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1242/jcs.00381"}], "href": "https://doi.org/10.1242/jcs.00381"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "12665549"}], "href": "https://pubmed.ncbi.nlm.nih.gov/12665549"}]}, {"type": "r", "ref": 2, "children": [{"type": "t", "text": "Naonobu Fujita, Takashi Itoh, Hiroko Omori, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.e07-12-1257"}], "href": "https://doi.org/10.1091/mbc.e07-12-1257"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18321988"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18321988"}]}, {"type": "r", "ref": 3, "children": [{"type": "t", "text": "Takashi Itoh, Naonobu Fujita, Eiko Kanno, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mol Biol Cell (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1091/mbc.e07-12-1231"}], "href": "https://doi.org/10.1091/mbc.e07-12-1231"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18448665"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18448665"}]}, {"type": "r", "ref": 4, "children": [{"type": "t", "text": "Tatsuya Saitoh, Naonobu Fujita, Myoung Ho Jang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature07383"}], "href": "https://doi.org/10.1038/nature07383"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18849965"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18849965"}]}, {"type": "r", "ref": 5, "children": [{"type": "t", "text": "Ken Cadwell, John Y Liu, Sarah L Brown, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nature (2008)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/nature07416"}], "href": "https://doi.org/10.1038/nature07416"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "18849966"}], "href": "https://pubmed.ncbi.nlm.nih.gov/18849966"}]}, {"type": "r", "ref": 6, "children": [{"type": "t", "text": "Ken Cadwell, Khushbu K Patel, Masaaki Komatsu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Autophagy (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4161/auto.5.2.7560"}], "href": "https://doi.org/10.4161/auto.5.2.7560"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19139628"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19139628"}]}, {"type": "r", "ref": 7, "children": [{"type": "t", "text": "Vojo Deretic "}, {"type": "b", "children": [{"type": "t", "text": "Multiple regulatory and effector roles of autophagy in immunity."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Curr Opin Immunol (2009)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.coi.2009.02.002"}], "href": "https://doi.org/10.1016/j.coi.2009.02.002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19269148"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19269148"}]}, {"type": "r", "ref": 8, "children": [{"type": "t", "text": "Leonardo H Travassos, Leticia A M Carneiro, Mahendrasingh Ramjeet, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Immunol (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ni.1823"}], "href": "https://doi.org/10.1038/ni.1823"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "19898471"}], "href": "https://pubmed.ncbi.nlm.nih.gov/19898471"}]}, {"type": "r", "ref": 9, "children": [{"type": "t", "text": "Ken Cadwell, Khushbu K Patel, Nicole S Maloney, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell (2010)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.cell.2010.05.009"}], "href": "https://doi.org/10.1016/j.cell.2010.05.009"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "20602997"}], "href": "https://pubmed.ncbi.nlm.nih.gov/20602997"}]}, {"type": "r", "ref": 10, "children": [{"type": "t", "text": "Seungmin Hwang, Nicole S Maloney, Monique W Bruinsma, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Host Microbe (2012)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.chom.2012.03.002"}], "href": "https://doi.org/10.1016/j.chom.2012.03.002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "22520467"}], "href": "https://pubmed.ncbi.nlm.nih.gov/22520467"}]}, {"type": "r", "ref": 11, "children": [{"type": "t", "text": "Taki Nishimura, Takeshi Kaizuka, Ken Cadwell, et al. "}, {"type": "b", "children": [{"type": "t", "text": "FIP200 regulates targeting of Atg16L1 to the isolation membrane."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO Rep (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/embor.2013.6"}], "href": "https://doi.org/10.1038/embor.2013.6"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23392225"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23392225"}]}, {"type": "r", "ref": 12, "children": [{"type": "t", "text": "Amanda M Marchiando, Deepshika Ramanan, Yi Ding, et al. "}, {"type": "b", "children": [{"type": "t", "text": "A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Host Microbe (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.chom.2013.07.013"}], "href": "https://doi.org/10.1016/j.chom.2013.07.013"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23954160"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23954160"}]}, {"type": "r", "ref": 13, "children": [{"type": "t", "text": "Kara L Conway, Petric Kuballa, Joo-Hye Song, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Gastroenterology (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1053/j.gastro.2013.08.035"}], "href": "https://doi.org/10.1053/j.gastro.2013.08.035"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "23973919"}], "href": "https://pubmed.ncbi.nlm.nih.gov/23973919"}]}, {"type": "r", "ref": 14, "children": [{"type": "t", "text": "Matthew T Sorbara, Lisa K Ellison, Mahendrasingh Ramjeet, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunity (2013)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.immuni.2013.10.013"}], "href": "https://doi.org/10.1016/j.immuni.2013.10.013"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24238340"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24238340"}]}, {"type": "r", "ref": 15, "children": [{"type": "t", "text": "Jun Ohshima, Youngae Lee, Miwa Sasai, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.1302822"}], "href": "https://doi.org/10.4049/jimmunol.1302822"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24563254"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24563254"}]}, {"type": "r", "ref": 16, "children": [{"type": "t", "text": "Kara G Lassen, Petric Kuballa, Kara L Conway, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Proc Natl Acad Sci U S A (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1073/pnas.1407001111"}], "href": "https://doi.org/10.1073/pnas.1407001111"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "24821797"}], "href": "https://pubmed.ncbi.nlm.nih.gov/24821797"}]}, {"type": "r", "ref": 17, "children": [{"type": "t", "text": "Vanessa M Hubbard-Lucey, Yusuke Shono, Katie Maurer, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunity (2014)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.immuni.2014.09.011"}], "href": "https://doi.org/10.1016/j.immuni.2014.09.011"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25308334"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25308334"}]}, {"type": "r", "ref": 18, "children": [{"type": "t", "text": "Kuo-Ting Sun, Michael Y C Chen, Ming-Gene Tu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Bone (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.bone.2014.11.026"}], "href": "https://doi.org/10.1016/j.bone.2014.11.026"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25485521"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25485521"}]}, {"type": "r", "ref": 19, "children": [{"type": "t", "text": "J W Symington, C Wang, J Twentyman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Mucosal Immunol (2015)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/mi.2015.7"}], "href": "https://doi.org/10.1038/mi.2015.7"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "25669147"}], "href": "https://pubmed.ncbi.nlm.nih.gov/25669147"}]}, {"type": "r", "ref": 20, "children": [{"type": "t", "text": "Xiaoting Wu, Angeleen Fleming, Thomas Ricketts, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms10533"}], "href": "https://doi.org/10.1038/ncomms10533"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26837467"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26837467"}]}, {"type": "r", "ref": 21, "children": [{"type": "t", "text": "Agnieszka M Kabat, Oliver J Harrison, Thomas Riffelmacher, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Elife (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.7554/eLife.12444"}], "href": "https://doi.org/10.7554/eLife.12444"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "26910010"}], "href": "https://pubmed.ncbi.nlm.nih.gov/26910010"}]}, {"type": "r", "ref": 22, "children": [{"type": "t", "text": "Emilio Boada-Romero, Inmaculada Serramito-Gómez, María P Sacristán, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/ncomms11821"}], "href": "https://doi.org/10.1038/ncomms11821"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27273576"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27273576"}]}, {"type": "r", "ref": 23, "children": [{"type": "t", "text": "Le Guo, Jin Zhao, Yuliang Qu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "microRNA-20a Inhibits Autophagic Process by Targeting ATG7 and ATG16L1 and Favors Mycobacterial Survival in Macrophage Cells."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Front Cell Infect Microbiol (2016)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.3389/fcimb.2016.00134"}], "href": "https://doi.org/10.3389/fcimb.2016.00134"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27803889"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27803889"}]}, {"type": "r", "ref": 24, "children": [{"type": "t", "text": "Jiehua Li, Zhixia Chen, Michael T Stang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Transiently expressed ATG16L1 inhibits autophagosome biogenesis and aberrantly targets RAB11-positive recycling endosomes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Autophagy (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/15548627.2016.1256521"}], "href": "https://doi.org/10.1080/15548627.2016.1256521"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "27875067"}], "href": "https://pubmed.ncbi.nlm.nih.gov/27875067"}]}, {"type": "r", "ref": 25, "children": [{"type": "t", "text": "Michaela A Diamanti, Jalaj Gupta, Moritz Bennecke, et al. "}, {"type": "b", "children": [{"type": "t", "text": "IKKα controls ATG16L1 degradation to prevent ER stress during inflammation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20161867"}], "href": "https://doi.org/10.1084/jem.20161867"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28082356"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28082356"}]}, {"type": "r", "ref": 26, "children": [{"type": "t", "text": "Markus Tschurtschenthaler, Timon E Adolph, Jonathan W Ashcroft, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease-like ileitis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20160791"}], "href": "https://doi.org/10.1084/jem.20160791"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28082357"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28082357"}]}, {"type": "r", "ref": 27, "children": [{"type": "t", "text": "Hong Zhang, Libo Zheng, Dermot P B McGovern, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Myeloid ATG16L1 Facilitates Host-Bacteria Interactions in Maintaining Intestinal Homeostasis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.1601293"}], "href": "https://doi.org/10.4049/jimmunol.1601293"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28130498"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28130498"}]}, {"type": "r", "ref": 28, "children": [{"type": "t", "text": "Ping Gao, Hongtao Liu, Huarong Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Inflammatory Bowel Disease-Associated Autophagy Gene "}, {"type": "a", "children": [{"type": "t", "text": "i"}], "href": "i"}, {"type": "t", "text": "Atg16L1T300A"}, {"type": "a", "children": [{"type": "t", "text": "/i"}], "href": "/i"}, {"type": "t", "text": " Acts as a Dominant Negative Variant in Mice."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.1502652"}], "href": "https://doi.org/10.4049/jimmunol.1502652"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28202618"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28202618"}]}, {"type": "r", "ref": 29, "children": [{"type": "t", "text": "Hong Zhang, Libo Zheng, Jeremy Chen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The protection role of Atg16l1 in CD11c"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "+"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": "dendritic cells in murine colitis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Immunobiology (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1016/j.imbio.2017.03.002"}], "href": "https://doi.org/10.1016/j.imbio.2017.03.002"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "28390705"}], "href": "https://pubmed.ncbi.nlm.nih.gov/28390705"}]}, {"type": "r", "ref": 30, "children": [{"type": "t", "text": "Yu Matsuzawa-Ishimoto, Yusuke Shono, Luis E Gomez, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Exp Med (2017)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1084/jem.20170558"}], "href": "https://doi.org/10.1084/jem.20170558"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29089374"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29089374"}]}, {"type": "r", "ref": 31, "children": [{"type": "t", "text": "Katherine Fletcher, Rachel Ulferts, Elise Jacquin, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "EMBO J (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.15252/embj.201797840"}], "href": "https://doi.org/10.15252/embj.201797840"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29317426"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29317426"}]}, {"type": "r", "ref": 32, "children": [{"type": "t", "text": "Yunjie Lu, Ji Gao, Shaopeng Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "miR-142-3p regulates autophagy by targeting ATG16L1 in thymic-derived regulatory T cell (tTreg)."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Dis (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41419-018-0298-2"}], "href": "https://doi.org/10.1038/s41419-018-0298-2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29459719"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29459719"}]}, {"type": "r", "ref": 33, "children": [{"type": "t", "text": "Huiwen Song, Xing Feng, Min Zhang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Autophagy (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/15548627.2017.1389357"}], "href": "https://doi.org/10.1080/15548627.2017.1389357"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "29634390"}], "href": "https://pubmed.ncbi.nlm.nih.gov/29634390"}]}, {"type": "r", "ref": 34, "children": [{"type": "t", "text": "Ta-Chiang Liu, Justin T Kern, Kelli L VanDussen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Clin Invest (2018)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1172/JCI120453"}], "href": "https://doi.org/10.1172/JCI120453"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30137026"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30137026"}]}, {"type": "r", "ref": 35, "children": [{"type": "t", "text": "Sydney Lavoie, Kara L Conway, Kara G Lassen, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Crohn's disease polymorphism, "}, {"type": "a", "children": [{"type": "t", "text": "i"}], "href": "i"}, {"type": "t", "text": "ATG16L1"}, {"type": "a", "children": [{"type": "t", "text": "/i"}], "href": "/i"}, {"type": "t", "text": " T300A, alters the gut microbiota and enhances the local Th1/Th17 response."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Elife (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.7554/eLife.39982"}], "href": "https://doi.org/10.7554/eLife.39982"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "30666959"}], "href": "https://pubmed.ncbi.nlm.nih.gov/30666959"}]}, {"type": "r", "ref": 36, "children": [{"type": "t", "text": "Karolina Slowicka, Inmaculada Serramito-Gómez, Emilio Boada-Romero, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Nat Commun (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41467-019-09667-z"}], "href": "https://doi.org/10.1038/s41467-019-09667-z"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31015422"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31015422"}]}, {"type": "r", "ref": 37, "children": [{"type": "t", "text": "Bernard Khor, Kara L Conway, Abdifatah S Omar, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Distinct Tissue-Specific Roles for the Disease-Associated Autophagy Genes ATG16L2 and ATG16L1."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Immunol (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.4049/jimmunol.1800419"}], "href": "https://doi.org/10.4049/jimmunol.1800419"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31451676"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31451676"}]}, {"type": "r", "ref": 38, "children": [{"type": "t", "text": "Scott Frendo-Cumbo, Javier R Jaldin-Fincati, Etienne Coyaud, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Deficiency of the autophagy gene ATG16L1 induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1 degradation."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Biol Chem (2019)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1074/jbc.RA119.009110"}], "href": "https://doi.org/10.1074/jbc.RA119.009110"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "31515271"}], "href": "https://pubmed.ncbi.nlm.nih.gov/31515271"}]}, {"type": "r", "ref": 39, "children": [{"type": "t", "text": "Janina Metje-Sprink, Johannes Groffmann, Piotr Neumann, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Crystal structure of the Rab33B/Atg16L1 effector complex."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Sci Rep (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41598-020-69637-0"}], "href": "https://doi.org/10.1038/s41598-020-69637-0"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "32737358"}], "href": "https://pubmed.ncbi.nlm.nih.gov/32737358"}]}, {"type": "r", "ref": 40, "children": [{"type": "t", "text": "Ying Zhang, Xu Xu, Mengxin Hu, et al. "}, {"type": "b", "children": [{"type": "t", "text": "SPATA33 is an autophagy mediator for cargo selectivity in germline mitophagy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Cell Death Differ (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1038/s41418-020-00638-2"}], "href": "https://doi.org/10.1038/s41418-020-00638-2"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33087875"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33087875"}]}, {"type": "r", "ref": 41, "children": [{"type": "t", "text": "Tara D Fischer, Chunxin Wang, Benjamin S Padman, et al. "}, {"type": "b", "children": [{"type": "t", "text": "STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "J Cell Biol (2020)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1083/jcb.202009128"}], "href": "https://doi.org/10.1083/jcb.202009128"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33201170"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33201170"}]}, {"type": "r", "ref": 42, "children": [{"type": "t", "text": "Daniel Hamaoui, Agathe Subtil "}, {"type": "b", "children": [{"type": "t", "text": "ATG16L1 functions in cell homeostasis beyond autophagy."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "FEBS J (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1111/febs.15833"}], "href": "https://doi.org/10.1111/febs.15833"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "33752267"}], "href": "https://pubmed.ncbi.nlm.nih.gov/33752267"}]}, {"type": "r", "ref": 43, "children": [{"type": "t", "text": "Timurs Maculins, Erik Verschueren, Trent Hinkle, et al. "}, {"type": "b", "children": [{"type": "t", "text": "Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Elife (2021)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.7554/eLife.62320"}], "href": "https://doi.org/10.7554/eLife.62320"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "34085925"}], "href": "https://pubmed.ncbi.nlm.nih.gov/34085925"}]}, {"type": "r", "ref": 44, "children": [{"type": "t", "text": "Ping Gao, Hongtao Liu, Huarong Huang, et al. "}, {"type": "b", "children": [{"type": "t", "text": "The Crohn Disease-associated ATG16L1"}, {"type": "a", "children": [{"type": "t", "text": "sup"}], "href": "sup"}, {"type": "t", "text": "T300A"}, {"type": "a", "children": [{"type": "t", "text": "/sup"}], "href": "/sup"}, {"type": "t", "text": " polymorphism regulates inflammatory responses by modulating TLR- and NLR-mediated signaling."}]}, {"type": "t", "text": " "}, {"type": "i", "children": [{"type": "t", "text": "Autophagy (2022)"}]}, {"type": "t", "text": " DOI: "}, {"type": "a", "children": [{"type": "t", "text": "10.1080/15548627.2022.2039991"}], "href": "https://doi.org/10.1080/15548627.2022.2039991"}, {"type": "t", "text": " PMID: "}, {"type": "a", "children": [{"type": "t", "text": "35220902"}], "href": "https://pubmed.ncbi.nlm.nih.gov/35220902"}]}]}]}
|
Synonyms | ZSCAN34, ZSCAN31, ZNF694 |
Proteins | ZKSC2_HUMAN |
NCBI Gene ID | 342357 |
API | |
Download Associations | |
Predicted Functions |
![]() |
Co-expressed Genes |
![]() |
Expression in Tissues and Cell Lines |
![]() |
ZKSCAN2 has 4,611 functional associations with biological entities spanning 9 categories (molecular profile, organism, functional term, phrase or reference, disease, phenotype or trait, chemical, structural feature, cell line, cell type or tissue, gene, protein or microRNA, sequence feature) extracted from 79 datasets.
Click the + buttons to view associations for ZKSCAN2 from the datasets below.
If available, associations are ranked by standardized value
Dataset | Summary | |
---|---|---|
Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the Allen Brain Atlas Adult Human Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression Profiles dataset. | |
Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq | tissue samples with high or low expression of ZKSCAN2 gene relative to other tissue samples from the Allen Brain Atlas Developing Human Brain Tissue Gene Expression Profiles by RNA-seq dataset. | |
Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the Allen Brain Atlas Prenatal Human Brain Tissue Gene Expression Profiles dataset. | |
BioGPS Human Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of ZKSCAN2 gene relative to other cell types and tissues from the BioGPS Human Cell Type and Tissue Gene Expression Profiles dataset. | |
BioGPS Mouse Cell Type and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of ZKSCAN2 gene relative to other cell types and tissues from the BioGPS Mouse Cell Type and Tissue Gene Expression Profiles dataset. | |
CCLE Cell Line Gene CNV Profiles | cell lines with high or low copy number of ZKSCAN2 gene relative to other cell lines from the CCLE Cell Line Gene CNV Profiles dataset. | |
CCLE Cell Line Gene Expression Profiles | cell lines with high or low expression of ZKSCAN2 gene relative to other cell lines from the CCLE Cell Line Gene Expression Profiles dataset. | |
CellMarker Gene-Cell Type Associations | cell types associated with ZKSCAN2 gene from the CellMarker Gene-Cell Type Associations dataset. | |
ChEA Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of ZKSCAN2 gene from the CHEA Transcription Factor Binding Site Profiles dataset. | |
ChEA Transcription Factor Targets | transcription factors binding the promoter of ZKSCAN2 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets dataset. | |
ChEA Transcription Factor Targets 2022 | transcription factors binding the promoter of ZKSCAN2 gene in low- or high-throughput transcription factor functional studies from the CHEA Transcription Factor Targets 2022 dataset. | |
COMPARTMENTS Curated Protein Localization Evidence Scores | cellular components containing ZKSCAN2 protein from the COMPARTMENTS Curated Protein Localization Evidence Scores dataset. | |
COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 | cellular components co-occuring with ZKSCAN2 protein in abstracts of biomedical publications from the COMPARTMENTS Text-mining Protein Localization Evidence Scores 2025 dataset. | |
COSMIC Cell Line Gene CNV Profiles | cell lines with high or low copy number of ZKSCAN2 gene relative to other cell lines from the COSMIC Cell Line Gene CNV Profiles dataset. | |
COSMIC Cell Line Gene Mutation Profiles | cell lines with ZKSCAN2 gene mutations from the COSMIC Cell Line Gene Mutation Profiles dataset. | |
CTD Gene-Disease Associations | diseases associated with ZKSCAN2 gene/protein from the curated CTD Gene-Disease Associations dataset. | |
DeepCoverMOA Drug Mechanisms of Action | small molecule perturbations with high or low expression of ZKSCAN2 protein relative to other small molecule perturbations from the DeepCoverMOA Drug Mechanisms of Action dataset. | |
DepMap CRISPR Gene Dependency | cell lines with fitness changed by ZKSCAN2 gene knockdown relative to other cell lines from the DepMap CRISPR Gene Dependency dataset. | |
DISEASES Experimental Gene-Disease Association Evidence Scores 2025 | diseases associated with ZKSCAN2 gene in GWAS datasets from the DISEASES Experimental Gene-Disease Assocation Evidence Scores 2025 dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores | diseases co-occuring with ZKSCAN2 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores dataset. | |
DISEASES Text-mining Gene-Disease Association Evidence Scores 2025 | diseases co-occuring with ZKSCAN2 gene in abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Assocation Evidence Scores 2025 dataset. | |
ENCODE Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at ZKSCAN2 gene from the ENCODE Histone Modification Site Profiles dataset. | |
ENCODE Transcription Factor Binding Site Profiles | transcription factor binding site profiles with transcription factor binding evidence at the promoter of ZKSCAN2 gene from the ENCODE Transcription Factor Binding Site Profiles dataset. | |
ENCODE Transcription Factor Targets | transcription factors binding the promoter of ZKSCAN2 gene in ChIP-seq datasets from the ENCODE Transcription Factor Targets dataset. | |
ESCAPE Omics Signatures of Genes and Proteins for Stem Cells | PubMedIDs of publications reporting gene signatures containing ZKSCAN2 from the ESCAPE Omics Signatures of Genes and Proteins for Stem Cells dataset. | |
GeneSigDB Published Gene Signatures | PubMedIDs of publications reporting gene signatures containing ZKSCAN2 from the GeneSigDB Published Gene Signatures dataset. | |
GEO Signatures of Differentially Expressed Genes for Diseases | disease perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Diseases dataset. | |
GEO Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Kinase Perturbations | kinase perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Kinase Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Small Molecules | small molecule perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Small Molecules dataset. | |
GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations | transcription factor perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Transcription Factor Perturbations dataset. | |
GEO Signatures of Differentially Expressed Genes for Viral Infections | virus perturbations changing expression of ZKSCAN2 gene from the GEO Signatures of Differentially Expressed Genes for Viral Infections dataset. | |
GO Biological Process Annotations 2015 | biological processes involving ZKSCAN2 gene from the curated GO Biological Process Annotations 2015 dataset. | |
GO Biological Process Annotations 2023 | biological processes involving ZKSCAN2 gene from the curated GO Biological Process Annotations 2023 dataset. | |
GO Biological Process Annotations 2025 | biological processes involving ZKSCAN2 gene from the curated GO Biological Process Annotations2025 dataset. | |
GO Cellular Component Annotations 2015 | cellular components containing ZKSCAN2 protein from the curated GO Cellular Component Annotations 2015 dataset. | |
GO Molecular Function Annotations 2015 | molecular functions performed by ZKSCAN2 gene from the curated GO Molecular Function Annotations 2015 dataset. | |
GO Molecular Function Annotations 2023 | molecular functions performed by ZKSCAN2 gene from the curated GO Molecular Function Annotations 2023 dataset. | |
GO Molecular Function Annotations 2025 | molecular functions performed by ZKSCAN2 gene from the curated GO Molecular Function Annotations 2025 dataset. | |
GTEx eQTL 2025 | SNPs regulating expression of ZKSCAN2 gene from the GTEx eQTL 2025 dataset. | |
GTEx Tissue Gene Expression Profiles | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles dataset. | |
GTEx Tissue Gene Expression Profiles 2023 | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the GTEx Tissue Gene Expression Profiles 2023 dataset. | |
GTEx Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of ZKSCAN2 gene relative to other tissue samples from the GTEx Tissue Sample Gene Expression Profiles dataset. | |
GTEx Tissue-Specific Aging Signatures | tissue samples with high or low expression of ZKSCAN2 gene relative to other tissue samples from the GTEx Tissue-Specific Aging Signatures dataset. | |
GWASdb SNP-Disease Associations | diseases associated with ZKSCAN2 gene in GWAS and other genetic association datasets from the GWASdb SNP-Disease Associations dataset. | |
GWASdb SNP-Phenotype Associations | phenotypes associated with ZKSCAN2 gene in GWAS datasets from the GWASdb SNP-Phenotype Associations dataset. | |
Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles | cell lines with high or low expression of ZKSCAN2 gene relative to other cell lines from the Heiser et al., PNAS, 2011 Cell Line Gene Expression Profiles dataset. | |
HPA Cell Line Gene Expression Profiles | cell lines with high or low expression of ZKSCAN2 gene relative to other cell lines from the HPA Cell Line Gene Expression Profiles dataset. | |
HPA Tissue Gene Expression Profiles | tissues with high or low expression of ZKSCAN2 gene relative to other tissues from the HPA Tissue Gene Expression Profiles dataset. | |
HPA Tissue Protein Expression Profiles | tissues with high or low expression of ZKSCAN2 protein relative to other tissues from the HPA Tissue Protein Expression Profiles dataset. | |
HPA Tissue Sample Gene Expression Profiles | tissue samples with high or low expression of ZKSCAN2 gene relative to other tissue samples from the HPA Tissue Sample Gene Expression Profiles dataset. | |
HPM Cell Type and Tissue Protein Expression Profiles | cell types and tissues with high or low expression of ZKSCAN2 protein relative to other cell types and tissues from the HPM Cell Type and Tissue Protein Expression Profiles dataset. | |
InterPro Predicted Protein Domain Annotations | protein domains predicted for ZKSCAN2 protein from the InterPro Predicted Protein Domain Annotations dataset. | |
JASPAR Predicted Transcription Factor Targets | transcription factors regulating expression of ZKSCAN2 gene predicted using known transcription factor binding site motifs from the JASPAR Predicted Transcription Factor Targets dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles | cell lines with high or low copy number of ZKSCAN2 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene CNV Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles | cell lines with high or low expression of ZKSCAN2 gene relative to other cell lines from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Expression Profiles dataset. | |
Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles | cell lines with ZKSCAN2 gene mutations from the Klijn et al., Nat. Biotechnol., 2015 Cell Line Gene Mutation Profiles dataset. | |
LOCATE Curated Protein Localization Annotations | cellular components containing ZKSCAN2 protein in low- or high-throughput protein localization assays from the LOCATE Curated Protein Localization Annotations dataset. | |
LOCATE Predicted Protein Localization Annotations | cellular components predicted to contain ZKSCAN2 protein from the LOCATE Predicted Protein Localization Annotations dataset. | |
MiRTarBase microRNA Targets | microRNAs targeting ZKSCAN2 gene in low- or high-throughput microRNA targeting studies from the MiRTarBase microRNA Targets dataset. | |
MotifMap Predicted Transcription Factor Targets | transcription factors regulating expression of ZKSCAN2 gene predicted using known transcription factor binding site motifs from the MotifMap Predicted Transcription Factor Targets dataset. | |
NIBR DRUG-seq U2OS MoA Box Gene Expression Profiles | drug perturbations changing expression of ZKSCAN2 gene from the NIBR DRUG-seq U2OS MoA Box dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations | gene perturbations changing expression of ZKSCAN2 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
PerturbAtlas Signatures of Differentially Expressed Genes for Mouse Gene Perturbations | gene perturbations changing expression of ZKSCAN2 gene from the PerturbAtlas Signatures of Differentially Expressed Genes for Gene Perturbations dataset. | |
Roadmap Epigenomics Cell and Tissue Gene Expression Profiles | cell types and tissues with high or low expression of ZKSCAN2 gene relative to other cell types and tissues from the Roadmap Epigenomics Cell and Tissue Gene Expression Profiles dataset. | |
Roadmap Epigenomics Histone Modification Site Profiles | histone modification site profiles with high histone modification abundance at ZKSCAN2 gene from the Roadmap Epigenomics Histone Modification Site Profiles dataset. | |
RummaGEO Drug Perturbation Signatures | drug perturbations changing expression of ZKSCAN2 gene from the RummaGEO Drug Perturbation Signatures dataset. | |
RummaGEO Gene Perturbation Signatures | gene perturbations changing expression of ZKSCAN2 gene from the RummaGEO Gene Perturbation Signatures dataset. | |
Sanger Dependency Map Cancer Cell Line Proteomics | cell lines associated with ZKSCAN2 protein from the Sanger Dependency Map Cancer Cell Line Proteomics dataset. | |
TargetScan Predicted Conserved microRNA Targets | microRNAs regulating expression of ZKSCAN2 gene predicted using conserved miRNA seed sequences from the TargetScan Predicted Conserved microRNA Targets dataset. | |
TargetScan Predicted Nonconserved microRNA Targets | microRNAs regulating expression of ZKSCAN2 gene predicted using nonconserved miRNA seed sequences from the TargetScan Predicted Nonconserved microRNA Targets dataset. | |
TCGA Signatures of Differentially Expressed Genes for Tumors | tissue samples with high or low expression of ZKSCAN2 gene relative to other tissue samples from the TCGA Signatures of Differentially Expressed Genes for Tumors dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores | tissues with high expression of ZKSCAN2 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Curated Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of ZKSCAN2 protein from the TISSUES Curated Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores | tissues with high expression of ZKSCAN2 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 | tissues with high expression of ZKSCAN2 protein in proteomics datasets from the TISSUES Experimental Tissue Protein Expression Evidence Scores 2025 dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores | tissues co-occuring with ZKSCAN2 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset. | |
TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 | tissues co-occuring with ZKSCAN2 protein in abstracts of biomedical publications from the TISSUES Text-mining Tissue Protein Expression Evidence Scores 2025 dataset. | |