X2K Web infers upstream regulatory networks from signatures of differentially expressed genes. By combining transcription factor enrichment analysis, protein-protein interaction network expansion, with kinase enrichment analysis, X2K Web produces inferred networks of transcription factors, proteins, and kinases predicted to regulate the expression of the inputted gene list. X2K Web provides the results as tables and interactive vector graphic figures that can be readily embedded within publications.. You can read more about the X2K concept by reading the original X2K publication.
In a recent study published in Nature Communications, Niepel et al. (2017) combined L1000 expression signatures together with cell growth phenotypes for over 600 drug-cell line combinations utilizing over hundred drugs, many of them kinase inhibitors. The case study provides the up and down differentially expressed genes after drug perturbations by these kinase inhibitors. Using the X2K pipeline it is possible to recover the targeted kinase as a highly ranked entry within the last KEA step.
Batch | Perturbation | Drug | Dose, μM | Time, hours | Cell Line | Fetch Gene Set |
---|---|---|---|---|---|---|
Batch | Perturbation | Drug | Dose, μM | Time, hours | Cell Line |
You can download command line standalone versions of the X2K tools in JAR format.
Command near each download link suggests usage:
X2K with source code (61.3 MB)
java -jar X2K.jar genelist.txt output.xml
X2K only
binary
(28.9 MB)
java -jar X2K.jar genelist.txt output.xml
ChEA (8.1
MB)
java -jar ChEA.jar [background] genelist.txt output.csv
G2N (3.6
MB)
java -jar G2N.jar genelist.txt output.sig [backgroundSigFiles...]
KEA (188
KB)
java -jar KEA.jar [background] genelist output.csv
L2N
(2
MB)
java -jar L2N.jar gene_list [background_file...] output.xml
Database | Download | Type | Interactions | Unique Kinases | Unique Substrates | PMID |
---|---|---|---|---|---|---|
ARCHS4 | Co-expression | 9936 | 517 | 3824 | ||
BIND | Literature PPI | 2533 | 227 | 1323 | ||
Harmonizome | ML Predictions | 10000 | 79 | 3635 | ||
HPRD | Literature PPI | 5043 | 262 | 2159 | ||
huMAP | Mass-Spec PPI | 1385 | 156 | 955 | ||
iPTMnet | Literature K-S | 947 | 131 | 724 | ||
iREF | Literature PPI | 26734 | 329 | 8036 | ||
KEA_2018 | Literature PPI | 30521 | 514 | 7946 | ||
KEGG | Literature PPI | 2238 | 131 | 621 | ||
MINT | Literature PPI | 1583 | 225 | 1065 | ||
NetworkIN | Predictions | 5829 | 190 | 2006 | ||
Phospho.ELM | Literature K-S | 1441 | 231 | 891 | ||
Phosphopoint | Literature K-S | 1970 | 281 | 1061 | ||
PhosphositePlus | Literature K-S | 6434 | 168 | 2680 |
Database | Download | Type | Interactions | Interactors | PMID |
---|---|---|---|---|---|
BIND | Literature PPI | 25622 | 5528 | ||
Biocarta | Literature PPI | 756 | 352 | ||
BioGRID | Mixed | 68759 | 7312 | ||
BioPLEX | Mass-spec | 56553 | 8610 | ||
DIP | Literature PPI | 3822 | 1946 | ||
figeys | Mass-spec | 6452 | 2033 | ||
HPRD | Literature PPI | 47496 | 7490 | ||
huMAP | Mass-spec | 62214 | 6061 | ||
InnateDB | Literature PPI | 4576 | 1523 | ||
IntAct | Mixed | 15726 | 4186 | ||
iREF | Mixed | 28417 | 5403 | ||
KEGG | Literature PPI | 13993 | 1198 | ||
MINT | Literature PPI | 75065 | 9415 | ||
MiPS | Mass-spec | 606 | 373 | ||
PDZbase | Literature PPI | 244 | 159 | ||
PPID | Literature PPI | 6998 | 1208 | ||
Sets2Networks | Predicted | 3000 | 828 | ||
SNAVI | Literature PPI | 2007 | 442 | ||
Stelzl | Mass-spec | 6207 | 1702 | ||
Vidal | Yeast-2-Hybrid | 6726 | 2541 |
Database | Download | Type | Interactions [M/H] | TFs [M/H] | Interactors [M/H] | PMID |
---|---|---|---|---|---|---|
ARCHS4 | Co-expression | 518466 / 472585 | 1734 / 1724 | 21857 / 21918 | ||
ChEA_2016 | ChIP-seq | 535545 / 461570 | 194 / 178 | 34462 / 35204 | ||
CREEDS | LOF-Microarray | 6140050 / 3583008 | 265 / 174 | 23170 / 20592 | ||
ENCODE_2015 | ChIP-seq | 259695 / 1218728 | 44 / 175 | 18170 / 22008 | ||
Enrichr_Co-occurence | Co-occurrence | 516300 | 1721 | 12487 | ||
huMAP | Mass-spec | 0 / 14017 | 0 / 419 | 0 / 2109 | ||
iREF | Mixed | 7239 / 57042 | 402 / 1372 | 3454 / 11021 | ||
JASPAR-TRANSFAC | PWM | 139520 / 424314 | 104 / 222 | 20895 / 22258 | ||
TF-PPIs_Genes2Fans | Predictions | 22525 | 278 | 6001 | ||
TF-LOF_Expression_GEO | LOF-Microarray | 86951 / 85829 | 82 / 43 | 23876 / 23585 |
Avi Ma'ayan, PhD
Professor, Department of Pharmacological Sciences
Director, Mount Sinai Center for Bioinformatics
Icahn School of Medicine at Mount Sinai
New York, NY 10029, USA
X2K Web's tools and services are free for academic, non-profit use, but for commercial uses please contact MSIP for a license.